Prof. Dr. Eckehard Schöll, PhD, Dr. Vasily Zaburdaev, Dipl.-Phys. Stefan Fruhner

5. Übungsblatt - Theoretische Physik III: Elektrodynamik 2008

Abgabe: Mo. 01.12.2008 bis 10:00 Uhr, Briefkasten ER-Gebäude

Bei den schriftlichen Ausarbeitungen werden ausführliche Kommentare zum Vorgehen erwartet. Dafür gibt es auch Punkte! Bitte das Tutorium und den Namen des Tutors auf dem Aufgabenzettel angeben! Die Abgabe kann in Dreiergruppen erfolgen.

Aufgabe 13 (5 Punkte): Eichtransformation

Die Potenziale ϕ und ${\bf A}$ sind in der Elektrodynamik nicht eindeutig gegeben. Sie liegen nur bis auf eine Eichtransformation fest. Betrachten Sie den Fall eines homogenen Magnetfeldes in z-Richtung: ${\bf B}=B_0{\bf e}_z$.

(a) Zeigen Sie, dass die Vektorpotenziale

$$\mathbf{A} = \frac{1}{2}\mathbf{B} \times \mathbf{r}, \qquad \mathbf{A'}_1 = -B_0 y \mathbf{e}_x, \qquad \mathbf{A'}_2 = B_0 x \mathbf{e}_y$$

die gleiche magnetische Induktion ${f B}$ liefern.

(b) Bestimmen Sie die Eichfunktionen F_1 und F_2 , die die Vektorpotenziale $\mathbf{A'}_1$ bzw. $\mathbf{A'}_2$ in das Potenzial \mathbf{A} überführen.

Aufgabe 14 (9 Punkte): Magnetischer Dipol

Die Stromdichte in einem Kreisleiter mit Radius a (Umfang $L\equiv 2\pi a$) sei in Kugelkoordinaten gegeben als

$$\mathbf{j}(\mathbf{r}) = j_{\varphi}(\mathbf{r})\mathbf{e}_{\varphi}(\mathbf{r}) = J \,\delta(\cos \theta) \,\delta(r-a)\,\mathbf{e}_{\varphi},$$

(a) Bestimmen Sie die Größe J aus der Stromstärke $I=\frac{1}{L}\int_V j_\varphi(\mathbf{r})\,d^3\mathbf{r}$ durch Integration über das Volumen V des Leiters. Verwenden und beweisen Sie dazu

$$\delta(f(x)) = \sum_{x_0} |f'(x_0)|^{-1} \, \delta(x - x_0) \quad \text{mit} \quad f \in C^1, f(x_0) = 0, f'(x_0) \neq 0.$$

(b) Berechnen Sie das Vektorpotential $\mathbf{A}(\mathbf{r})$, das Magnetfeld $\mathbf{B} = \nabla \times \mathbf{A}$ und das magnetische Dipolmoment \mathbf{m} aus den Gleichungen

$$\mathbf{A}(\mathbf{r}) = \frac{\mu_0}{4\pi} \, \frac{\mathbf{m} \times \mathbf{r}}{r^3} \qquad \text{mit} \qquad \mathbf{m} \equiv \frac{1}{2} \int_V d^3 r' \mathbf{r}' \times \mathbf{j}(\mathbf{r}')$$

indem Sie die vorgegebene Stromdichte $\mathbf{j}(\mathbf{r})$ einsetzen.

Aufgabe 15 (6 Punkte): Verschiebungsstrom

Betrachten Sie einen Plattenkondensator aus zwei parallelen kreisförmigen Platten mit dem Radius α im Abstand d zueinander, der von einem zeitlich konstanten Strom I aufgeladen wird. Verwenden Sie die Näherung eines homogenen elektrischen Feldes zwischen den Platten und vernachlässigen Sie Randeffekte.

- (a) Berechnen Sie den Verschiebungsstrom und die Energiedichte w des elektromagnetischen Feldes. Stellen Sie $\mathbf{B}(\mathbf{r})$ innerhalb einer Fläche parallel zu den Platten im Zwischenraum grafisch dar.
- (b) Berechnen Sie die zeitliche Anderung der Energiedichte w sowie die Energiestromdichte w beim Aufladen. Interpretieren Sie das Ergebnis.

Achtung: Der Abgabetermin wurde auf Montag 10 Uhr verschoben.

Vorlesung: • Mittwoch 12:15 Uhr – 13:45 Uhr im EW 203

• Freitag 10:15 Uhr - 11:45 Uhr im EW 203

Scheinkriterien: • Mindestens 50% der Übungspunkte.

- Bestandene Klausur.
- Regelmäßige und aktive Teilnahme in den Tutorien.
- Vorstellen einer Übungsaufgabe im Tutorium

Literatur zur Lehrveranstaltung:

- Theoretische Physik III, Elektrodynamik (E. Schöll): Ansichtsexemplare in der Bereichsbibliothek Physik und in der Studienfachberatung; fertig gebundene Kopien in der Volkswagen-Bibliothek, Fasanenstr. 88 (1. Stock, Fa. Alpha Copy)
- W. Nolting, Grundkurs der Theoretischen Physik, Bd.3: Elektrodynamik (Springer, 2004)
- J.D. Jackson, Klassische Elektrodynamik, 4. Auflagen (Gruyter, 2006).
- P. Reineker, M. Schulz, B. M. Schulz, Theoretische Physik II (Wiley-VCH, 2006)
- T. Fliessbach, Elektrodynamik (Spektrum Akademischer Verlag, 2004)
- L. Landau, E. Lifschitz, Lehrbuch der Theoretischen Physik, Band II (Akademie-Verlag, Berlin 1989)
- R. Feynman, Feynman Lectures in Physics, Band II (Oldenbourg, 2001)
- S. Großmann, Mathematische Einführung in die Physik (Teubner, 2006).
- E. Rebhahn Theoretische Physik: Elektrodynamik (Spektrum, 2007)
- H. Mitter Elektrodynamik (BI 1990)
- H. Stumpf, W. Schuler Elektrodynamik (Vieweg 1981)

	Name	Tag	Zeit	Raum	Tel.
Sprechzeiten:	Prof. Dr. E. Schöll, PhD	Mi	14:30-15:30 Uhr	EW 735	23500
	Dr. Vasily Zaburdaev	Mi	11:00-12:00 Uhr	EW 708	25225
	Dipl-Phys. Stefan Fruhner	Di	14:00-15:00 Uhr	EW 627	27681
	Christin David	Fr	14:30-15:30 Uhr	EW 217	22848
	Martin Kliesch	Fr	16:00-17:00 Uhr	EW 217	26232

Tutorien: Die folgenden Tutoriumstermine werden angeboten

Мо	10-12 Uhr	ER 164	Christin David
Мо	12-14 Uhr	EW 229	Christin David
Di	10-12 Uhr	EW 246	Vasily Zaburdaev (englisch)
Di	12-14 Uhr	MA 644	Martin Kliesch
Mi	10-12 Uhr	EW 182	Stefan Fruhner
Do	10-12 Uhr	ER 164	Martin Kliesch

Klausur: Freitag, den 06.02.2009 von 10:00 – 12:00 Uhr im ER 270