Prof. Dr. Eckehard Schöll, PhD, Dr. Vasily Zaburdaev, Dipl.-Phys. Stefan Fruhner

6. Übungsblatt - Theoretische Physik III: Elektrodynamik 2008

Abgabe: Mo. 08.12.2008 bis 10:00 Uhr, Briefkasten ER-Gebäude

Bei den schriftlichen Ausarbeitungen werden ausführliche Kommentare zum Vorgehen erwartet. Dafür gibt es auch Punkte! Bitte das Tutorium und den Namen des Tutors auf dem Aufgabenzettel angeben! Die Abgabe kann in Dreiergruppen erfolgen.

Aufgabe 16 (6 Punkte): Energie und Impuls aperiodischer Wellen

Ein elektromagnetisches Feld sei gegeben durch

$$\mathbf{E}(\mathbf{r},t) = \mathbf{E}_0 f(\mathbf{k} \cdot \mathbf{r} - \omega t), \quad \mathbf{B}(\mathbf{r},t) = \mathbf{B}_0 f(\mathbf{k} \cdot \mathbf{r} - \omega t),$$

wobei $\mathbf{E}_0, \mathbf{B}_0, \mathbf{k}$ konstante Vektoren seien, $\omega \in \mathbb{R}$ und $f : \mathbb{R} \to \mathbb{R}$ eine beliebige glatte Funktion.

- Welche Bedingungen müssen für die Vektoren \mathbf{E}_0 , \mathbf{B}_0 , \mathbf{k} sowie die Zahl ω gelten, damit die MAXWELL'SCHEN Vakuum-Feldgleichungen erfüllt sind?
- ullet Berechnen Sie die Energiedichte w und den Poynting-Vektor ${f S}$ des Feldes und überprüfen Sie die Energiebilanz.

Aufgabe 17 (8 Punkte): MAXWELL'SCHER SPANNUNGSTENSOR, STRAHLUNGSDRUCK

• Zeigen Sie, dass folgende Relation gilt:

$$\mathbf{B} \times (\nabla \times \mathbf{B}) = \frac{1}{2} \nabla (\mathbf{B} \cdot \mathbf{B}) - (\mathbf{B} \cdot \nabla) \mathbf{B}$$
$$= \nabla \cdot \left[\frac{1}{2} \mathbb{1} (\mathbf{B} \cdot \mathbf{B}) - \mathbf{B} \otimes \mathbf{B} \right] + \mathbf{B} (\nabla \cdot \mathbf{B})$$

• Eine ebene elektromagnetische Welle falle senkrecht auf eine Wand. Die Welle werde beschrieben durch das Vektorpotential $\mathbf{A}(\mathbf{r},t) = \mathbf{A}_0 \cos(\mathbf{k} \cdot \mathbf{r} - \omega t)$, wobei \mathbf{A} senkrecht auf \mathbf{k} stehe. Berechnen Sie den Strahlungsdruck auf die Wand für die beiden Fälle, dass a) die Wand schwarz sei, also alle Strahlung vollständig absorbiere und b) die Wand ideal verspiegelt sei, also alle Strahlung mit unveränderter Intensität reflektiere.

Aufgabe 18 (6 Punkte): Kugelwelle

Zeigen Sie, dass die lineare Superposition ebener Wellen $e^{i({f k}\cdot{f r}-\omega t)}$ mit den Fourieramplituden

$$u(\mathbf{k}, \omega) = 2\delta(\omega - \omega_0) \frac{1}{k^2 - k_0^2}, \quad k = |\mathbf{k}|$$

eine Kugelwelle ergibt. Berechnen Sie die auftretenden uneigentlichen Integrale mit Hilfe des Residuensansatzes. Vorlesung: • Mittwoch 12:15 Uhr – 13:45 Uhr im EW 203

• Freitag 10:15 Uhr - 11:45 Uhr im EW 203

Scheinkriterien: • Mindestens 50% der Übungspunkte.

- Bestandene Klausur.
- Regelmäßige und aktive Teilnahme in den Tutorien.
- Vorstellen einer Übungsaufgabe im Tutorium

Literatur zur Lehrveranstaltung:

- Theoretische Physik III, Elektrodynamik (E. Schöll): Ansichtsexemplare in der Bereichsbibliothek Physik und in der Studienfachberatung; fertig gebundene Kopien in der Volkswagen-Bibliothek, Fasanenstr. 88 (1. Stock, Fa. Alpha Copy)
- W. Nolting, Grundkurs der Theoretischen Physik, Bd.3: Elektrodynamik (Springer, 2004)
- J.D. Jackson, Klassische Elektrodynamik, 4. Auflagen (Gruyter, 2006).
- P. Reineker, M. Schulz, B. M. Schulz, Theoretische Physik II (Wiley-VCH, 2006)
- T. Fliessbach, Elektrodynamik (Spektrum Akademischer Verlag, 2004)
- L. Landau, E. Lifschitz, Lehrbuch der Theoretischen Physik, Band II (Akademie-Verlag, Berlin 1989)
- R. Feynman, Feynman Lectures in Physics, Band II (Oldenbourg, 2001)
- S. Großmann, Mathematische Einführung in die Physik (Teubner, 2006).
- E. Rebhahn Theoretische Physik: Elektrodynamik (Spektrum, 2007)
- H. Mitter Elektrodynamik (BI 1990)
- H. Stumpf, W. Schuler Elektrodynamik (Vieweg 1981)

	Name	Tag	Zeit	Raum	Tel.
Sprechzeiten:	Prof. Dr. E. Schöll, PhD	Mi	14:30-15:30 Uhr	EW 735	23500
	Dr. Vasily Zaburdaev	Mi	11:00-12:00 Uhr	EW 708	25225
	Dipl-Phys. Stefan Fruhner	Di	14:00-15:00 Uhr	EW 627	27681
	Christin David	Fr	14:30-15:30 Uhr	EW 217	22848
	Martin Kliesch	Do	16:00-17:00 Uhr	EW 217	26232

Tutorien: Die folgenden Tutoriumstermine werden angeboten

IVIO	10–12 Unr	ER 104	Christin David
Мо	12-14 Uhr	EW 229	Christin David
Di	10–12 Uhr	EW 246	Vasily Zaburdaev (englisch)
Di	12-14 Uhr	MA 644	Martin Kliesch
Mi	10–12 Uhr	EW 182	Stefan Fruhner
Do	10-12 Uhr	ER 164	Martin Kliesch

Klausur: Freitag, den 06.02.2009 von 10:00 – 12:00 Uhr im ER 270