Prof. Dr. Eckehard Schöll, PhD, Dr. Vasily Zaburdaev, Dipl.-Phys. Stefan Fruhner

7. Übungsblatt - Theoretische Physik III: Elektrodynamik 2008

Abgabe: Mo. 15.12.2008 bis 10:00 Uhr, Briefkasten ER-Gebäude

Bei den schriftlichen Ausarbeitungen werden ausführliche Kommentare zum Vorgehen erwartet. Dafür gibt es auch Punkte! Bitte das Tutorium und den Namen des Tutors auf dem Aufgabenzettel angeben! Die Abgabe kann in Dreiergruppen erfolgen.

Aufgabe 19 (8 Punkte): Retardierte Potenziale

Zeigen Sie ausgehend vom Vektorpotenzial A in elektrischer Dipolstrahlungsnäherung

$$\mathbf{A}(\mathbf{r},t) = \frac{\mu_0}{4\pi r} \dot{\mathbf{p}}(t - \frac{r}{c})$$

und unter Benutzung der Lorenz-Eichung, dass für die Felder in Fernfeldnäherung gilt:

$$\begin{split} \mathbf{B}(\mathbf{r},t) &= \frac{\mu_0}{4\pi c} \frac{1}{r^2} \left[\ddot{\mathbf{p}} \left(t - \frac{r}{c} \right) \times \mathbf{r} \right] + O(\frac{1}{r^2}) \,, \\ \mathbf{E}(\mathbf{r},t) &= \frac{1}{4\pi \epsilon_0 c^2} \frac{1}{r^3} \left[\ddot{\mathbf{p}} \left(t - \frac{r}{c} \right) \times \mathbf{r} \right] \times \mathbf{r} + O(\frac{1}{r^2}) \,. \end{split}$$

Aufgabe 20 (12 Punkte): Strahlungsdämpfung eines Dipols

Im Rutherfordschen Atommodell für das Wasserstoffatom nimmt man an, dass sich ein Elektron (Ladung -e) auf einer Kreisbahn mit dem Radius R und der Winkelgeschwindigkeit ω um den Kern bewegt. Dieses hat das elektrische Dipolmoment $\mathbf{p}(t) = -e\mathbf{r}(t)$ zur Folge.

- (a) Berechnen Sie in Kugelkoordinaten die elektromagnetischen Felder ${\bf E}$ und ${\bf B}$ in der Fernzone (Dipolnäherung) für das schwingende Elektron. Diskutieren Sie die Polarisationsverhältnisse für die Beobachtung entlang der z-Achse ($\theta=0$) und in der x-y-Ebene ($\theta=\frac{\pi}{2}$).
- (b) Leiten Sie einen Ausdruck für den Poynting-Vektor ab und berechnen Sie dessen zeitlichen Mittelwert < S> und diskutieren Sie die Richtungsabhängigkeit.
- (c) Berechnen Sie daraus den zeitlichen Mittelwert der abgestrahlten Leistung.

 $\it Hinweis: \, Nutzen \, Sie \, dazu, \, dass \, die \, mittlere \, Strahlungsleistung \, pro \, Raumwinkelelement \, in \, Richtung \, {\bf n} \, \, durch$

$$\frac{dI}{d\Omega} = r^2 |\langle \mathbf{S} \rangle \cdot \mathbf{n}|$$

gegeben ist.

(d) Schätzen Sie die Lebensdauer T des Wasserstoffatoms im Rahmen dieser klassischen Betrachtungsweise ab und deuten Sie Ihr Ergebnis.

Prof. Dr. Eckehard Schöll, PhD, Dr. Vasily Zaburdaev, Dipl.-Phys. Stefan Fruhner

Vorlesung: • Mittwoch 12:15 Uhr – 13:45 Uhr im EW 203

Freitag 10:15 Uhr – 11:45 Uhr im EW 203

Scheinkriterien: • Mindestens 50% der Übungspunkte.

- Bestandene Klausur.
- Regelmäßige und aktive Teilnahme in den Tutorien.
- Vorstellen einer Übungsaufgabe im Tutorium

Literatur zur Lehrveranstaltung:

- Theoretische Physik III, Elektrodynamik (E. Schöll): Ansichtsexemplare in der Bereichsbibliothek Physik und in der Studienfachberatung; fertig gebundene Kopien in der Volkswagen-Bibliothek, Fasanenstr. 88 (1. Stock, Fa. Alpha Copy)
- W. Nolting, Grundkurs der Theoretischen Physik, Bd.3: Elektrodynamik (Springer, 2004)
- J.D. Jackson, Klassische Elektrodynamik, 4. Auflagen (Gruyter, 2006).
- P. Reineker, M. Schulz, B. M. Schulz, Theoretische Physik II (Wiley-VCH, 2006)
- T. Fliessbach, Elektrodynamik (Spektrum Akademischer Verlag, 2004)
- L. Landau, E. Lifschitz, Lehrbuch der Theoretischen Physik, Band II (Akademie-Verlag, Berlin 1989)
- R. Feynman, Feynman Lectures in Physics, Band II (Oldenbourg, 2001)
- S. Großmann, Mathematische Einführung in die Physik (Teubner, 2006).
- E. Rebhahn Theoretische Physik: Elektrodynamik (Spektrum, 2007)
- H. Mitter Elektrodynamik (BI 1990)
- H. Stumpf, W. Schuler Elektrodynamik (Vieweg 1981)

	Name	Tag	Zeit	Raum	Tel.
Sprechzeiten:	Prof. Dr. E. Schöll, PhD	Mi	14:30-15:30 Uhr	EW 735	23500
	Dr. Vasily Zaburdaev	Mi	11:00-12:00 Uhr	EW 708	25225
	Dipl-Phys. Stefan Fruhner	Di	14:00-15:00 Uhr	EW 627	27681
	Christin David	Fr	14:30-15:30 Uhr	EW 217	22848
	Martin Kliesch	Do	16:00-17:00 Uhr	EW 217	26232

Tutorien: Die folgenden Tutoriumstermine werden angeboten

Мо	10–12 Uhr	ER 164	Christin David
Мо	12-14 Uhr	EW 229	Christin David
Di	10-12 Uhr	EW 246	Vasily Zaburdaev (englisch)
Di	12-14 Uhr	MA 644	Martin Kliesch
Mi	10-12 Uhr	EW 182	Stefan Fruhner
Do	10-12 Uhr	ER 164	Martin Kliesch

Klausur: Freitag, den 06.02.2009 von 10:00 – 12:00 Uhr im ER 270