Prof. Dr. Wolfgang Muschik, Dipl.-Phys. Philipp Zedler

4. Übungsblatt – Theoretische Physik IVa: Thermondynamik und Statistik

Abgabe: Mi, 10.12.2008 in der Vorlesung

Bei den schriftlichen Ausarbeitungen werden ausführliche Kommentare zum Vorgehen erwartet. Dafür gibt es auch Punkte!

Aufgabe 7 (6 Punkte): Nichtgleichgewichtsentropie

Wir betrachten ein Gesamtsystem, bestehend aus System und Bad, und einen (hermiteschen) Operator \mathcal{F} , der nur auf das System wirkt. Das Gesamtsystem befinde sich in einem Zustand, der sich in Tensorprodukte der Systembasis $\{|s\rangle\}$ und der Badbasis $\{|b\rangle\}$ entwickeln lässt: $|\chi\rangle=$ $\sum_{s,b} c_{s,b}(t)|s\rangle|b\rangle$. Der Erwartungswert des Operators ${\cal F}$ lässt sich auf zwei verschiedene Weisen schreiben:

(1)
$$\langle \mathcal{F} \rangle = \sum_{j} p_{j} \langle \phi^{j} | \mathcal{F} | \phi^{j} \rangle = \sum_{s,s'} \left(\sum_{b} c_{s'b}^{*}(t) c_{sb}(t) \right) \langle s' | \mathcal{F} | s \rangle.$$

Wie sehen die Wahrscheinlichkeiten p_i als Funktion der Koeffizienten $c_{sb}(t)$ aus (siehe Aufgabe 4)? Nutze diesen Zusammenhang, um den mikroskopischen Ursprung der Zeitabhängigkeit der Nichtgleichgewichtsentropie zu finden.

Aufgabe 8 (6 Punkte): Vakuumerzeugung

Wieviel Arbeit muss mindestens aufgewendet werden, um ein ideales Gas mit dem Volumen V bei der konstanten Temperatur T, ausgehend von einem Druck p_1 , auf den Druck p_2 zu evakuieren? Probiere Zahlenwerte aus, zum Beispiel $V=20m^2$, $T=20^{\circ}C$, $p_1=1bar$ und $p_2=0,01bar$.

Vorlesung:

Mittwoch 10:00 Uhr – 12:00 Uhr im EW 229

Ubung: Klausur:

• Freitag 08:30 Uhr – 10:00 Uhr im EW 229 alle 2 Wochen

Freitag, 6. Februar 2009, 08:00 Uhr – 10:00 Uhr im EW 229

Scheinkriterien: • Aktive Teilnahme am Tutorium,

• Mindestens 50% der Übungspunkte,

• Bestandene Klausur.

Sprechzeiten:

• Prof. Dr. Wolfgang Muschik: Mi, 12-13 Uhr im EW 144, Tel: 23765

• Dipl-Phys. Philipp Zedler: Do, 11-12 Uhr im EW 711, Tel: 27884