Prof. Holger Stark,

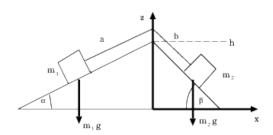
Stefan Fruhner, Niels Majer, Maximilian Schmitt, Andreas Zöttl, Christian Fräßdorf, Wassilij Kopylov, Benjamin Regler, Emely Wiegand

11. Übungsblatt – Theoretische Physik I: Mechanik

Abgabe: Di. 17.01.2012 bis 8:30 Uhr, Briefkasten ER-Gebäude

Bei den schriftlichen Ausarbeitungen werden ausführliche Kommentare zum Vorgehen erwartet. Dafür gibt es auch Punkte! Die Abgabe soll in Zweiergruppen erfolgen. Bitte geben Sie Ihre Namen, Matrikelnummern und das Tutorium (Tutor und Termin) an. Kreuzen Sie am Beginn des Tutoriums die mündlichen Aufgaben an, die Sie bearbeitet haben und an der Tafel vorrechnen können.

Aufgabe 32: Klassifizierung von Zwangsbedingungen (mündlich)


Skizzieren Sie die folgenden Systeme und klassifizieren Sie sie jeweils nach den Gesichtspunkten: skleronom oder rheonom, holonom oder nichtholonom, konservativ oder nichtkonservativ.

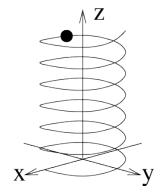
- (a) Eine Kugel, die auf einer festen Kugel reibungsfrei hinunterrollt.
- (b) Ein Zylinder, der eine rauhe, schiefe Ebene (Neigungswinkel α) herabrollt.
- (c) Ein Teilchen, das auf der rauhen Fläche eines Rotationsparaboloides hinuntergleitet.
- (d) Ein Teilchen, das sich längs eines sehr langen Stabes reibungslos bewegt. Der Stab rotiert mit der Winkelgeschwindigkeit ω in einer vertikalen Ebene um eine horizontale Achse.

Aufgabe 33 (12 Punkte): Schiefe Ebenen (2 Massen) (schriftlich 3+3+3+3)

Zwei Massen m_1 und m_2 seien wie in der nebenstehenden Figur durch ein Seil der Länge L miteinander verbunden. Die Massen bewegen sich auf den schiefen Ebenen reibungslos und sind dem äußeren homogenen Gravitationsfeld in der z Richtung unterworfen.

- (a) Formulieren Sie die Zwangsbedingung des Systems und klassifizieren Sie diese.
- (b) Stellen Sie die Lagrange'schen Gleichungen erster Art un die dazugehörigen Bedingungsgleichung für dieses System auf.
- (c) Bestimmen Sie die Lösung der Bewegungsgleichung , wenn die Neigungswinkel der Ebenen gleich sind, und sich die Körper zur Zeit t=0 in Ruhe befinden.
- (d) Berechnen Sie die Zwangskräfte.

Bitte Rückseite beachten! →


11. Übung TPI WS11

Aufgabe 34 (8 Punkte): Perle auf der Schraubenlinie (schriftlich 3+3+2)

Eine Perle der Masse m gleite unter Einwirkung der Gravitationskraft ${f F}=-mg{f e}_z$ reibungsfrei auf einer Schraubenlinie (siehe Abb.)

$$\mathbf{r}(t) = \begin{pmatrix} R\cos\varphi(t) \\ R\sin\varphi(t) \\ b\varphi(t) \end{pmatrix}$$

mit b>0, konstantem Radius R>0 und Polarwinkel $\varphi(t)$.

- (a) Wählen Sie geeignete Koordinaten und formulieren Sie die Zwangsbedingungen.
- (b) Bestimmen Sie die Lagrange-Gleichungen 1. Art für die drei Koordinaten.
- (c) Berechnen Sie die Zwangskräfte.

Sprechzeiten:	Name	Tag	Zeit	Raum	Tel.
	Prof. Holger Stark	FR	11:30-12:30 Uhr	EW 709	29623
	Stefan Fruhner	FR	14:30-15:30 Uhr	EW 627/28	27681
	Niels Majer	DO	13:00-14:00 Uhr	ER 240	29052
	Max Schmitt	DO	10:00-11:00 Uhr	EW 708	25225
	Andreas Zöttl	MI	11:00-12:00 Uhr	EW 702	24253
	Christian Fräßdorf	DI	18:00-19:00 Uhr	EW 060	26143
	Benjamin Regler	МО	13:00-14:00 Uhr	EW 060	26143
	Wassilij Kopylov	MO	16:00-17:00 Uhr	EW 060	26143
	Emely Wiegand	МО	12:00-13:00 Uhr	EW 060	26143

Aktuelle Informationen werden auf der Webseite bekannt gegeben: http://www.tu-berlin.de/index.php?id=109406