Prof. Holger Stark,

Stefan Fruhner, Niels Majer, Maximilian Schmitt, Andreas Zöttl, Christian Fräßdorf, Wassilij Kopylov, Benjamin Regler, Emely Wiegand

12. Übungsblatt - Theoretische Physik I: Mechanik

Abgabe: Di. 24.01.2012 bis 8:30 Uhr, Briefkasten ER-Gebäude

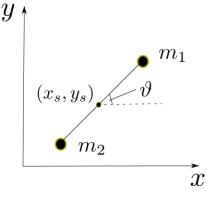
Bei den schriftlichen Ausarbeitungen werden ausführliche Kommentare zum Vorgehen erwartet. Dafür gibt es auch Punkte! Die Abgabe soll in Zweiergruppen erfolgen. Bitte geben Sie Ihre Namen, Matrikelnummern und das Tutorium (Tutor und Termin) an. Kreuzen Sie am Beginn des Tutoriums die mündlichen Aufgaben an, die Sie bearbeitet haben und an der Tafel vorrechnen können.

Aufgabe 35 (12 Punkte): Fliehkraftpendel (schriftlich 4+4+4)

Ein Ring vom Radius R rotiert mit konstanter Winkelgeschwindigkeit ω um eine Achse parallel zum homogenen Schwerefeld der Erde. Auf dem Ring bewege sich reibungsfrei ein Massenpunkt der Masse m.

- (a) Stellen Sie die Bewegungsgleichung des Massenpunkts mit Hilfe der Lagrangeschen Gleichungen 2. Art auf.
- (b) Bestimmen Sie die Gleichgewichtspunkte der Bewegung des Massenpunkts und untersuchen Sie deren Stabilität.
- (c) Lösen Sie die Differentialgleichung numerisch für die Werte $m=1{\rm kg},~R=1{\rm m},~\omega=10{\rm s}^{-1}$ und die Anfangswerte

1)
$$\phi(0) = 1, \dot{\phi}(0) = 0$$
 sowie


2)
$$\phi(0) = 0, \dot{\phi}(0) = 1s^{-1}$$
.

Stellen Sie das Ergebnis grafisch dar.

Aufgabe 36: Hantel mit Reibung (mündlich)

Zwei Punktmassen mit gleicher Masse $m=m_1=m_2$ sind durch eine masselose Stange der Länge l zu einer Hantel verbunden. Sie bewegen sich in der xy- Ebene und unterliegen dabei einer Reibungskraft, die proportional zu ihrer Geschwindigkeit ist

$$\mathbf{F}_i^{(R)} = \gamma \dot{\mathbf{r}}_i \qquad \text{mit} \qquad i = 1, 2.$$

- (a) Formulieren Sie die Zwangsbedingungen und wählen Sie passende generalisierte Koordinaten.
- (b) Reibungskräfte sind nicht konservativ. Stellen Sie die entsprechenden generalisierten Kräfte Q_j auf!
- (c) Stellen Sie die Lagrange'schen Bewegungsgleichungen 2. Art auf.
- (d) Lösen Sie diese unter den Anfangsbedingungen:
 - Schwerpunkt : $x_s(0) = y_s(0) = 0$, $\dot{x}_s(0) = v_x$, $\dot{y}_s(0) = v_y$
 - Winkel : $\vartheta(0) = 0$, $\dot{\vartheta}(0) = \omega$

Bitte Rückseite beachten!→

12. Übung TPI WS11

Aufgabe 37 (8 Punkte): Relativistisches elektrisch geladenes Teilchen im elektromagnetischen Feld (schriftlich 3+5)

Betrachten Sie die Bewegung eines relativistischen Teilchens (Ruhemasse m_0 , Ladung q). Gehen Sie dazu von der Lagrange-Funktion

$$L = -\left(1 - \frac{\dot{\mathbf{r}}^2}{c^2}\right)^{1/2} m_0 c^2 - q\phi(\mathbf{r}, t) + q\mathbf{A}(\mathbf{r}, t) \cdot \dot{\mathbf{r}}$$

aus.

- (a) Zeigen Sie, dass im nicht-relativistischen Grenzfall $\frac{\dot{r}}{c} \ll 1$ die Lagrange-Funktion $L = \frac{m_0}{2}\dot{\mathbf{r}}^2 q\phi(\mathbf{r},t) + q\mathbf{A}(\mathbf{r},t)\cdot\dot{\mathbf{r}}$ aus der Vorlesung folgt.
- (b) Leiten Sie die Bewegungsgleichung des Teilchens für den relativistischen Fall ab und bestimmen Sie die Energie des Teilchens.

Sprechzeiten:	Name	Tag	Zeit	Raum	Tel.
	Prof. Holger Stark	FR	11:30-12:30 Uhr	EW 709	29623
	Stefan Fruhner	FR	14:30-15:30 Uhr	EW 627/28	27681
	Niels Majer	DO	13:00-14:00 Uhr	ER 240	29052
	Max Schmitt	DO	10:00-11:00 Uhr	EW 708	25225
	Andreas Zöttl	MI	11:00-12:00 Uhr	EW 702	24253
	Christian Fräßdorf	DI	18:00-19:00 Uhr	EW 060	26143
	Benjamin Regler	МО	13:00-14:00 Uhr	EW 060	26143
	Wassilij Kopylov	MO	16:00-17:00 Uhr	EW 060	26143
	Emely Wiegand	МО	12:00-13:00 Uhr	EW 060	26143

Aktuelle Informationen werden auf der Webseite bekannt gegeben: http://www.tu-berlin.de/index.php?id=109406