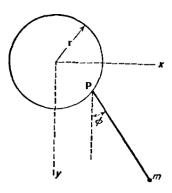
Prof. Holger Stark,

Stefan Fruhner, Niels Majer, Maximilian Schmitt, Andreas Zöttl, Christian Fräßdorf, Wassilij Kopylov, Benjamin Regler, Emely Wiegand


13. Übungsblatt – Theoretische Physik I: Mechanik

Abgabe: Di. 31.01.2012 bis 8:30 Uhr, Briefkasten ER-Gebäude

Bei den schriftlichen Ausarbeitungen werden ausführliche Kommentare zum Vorgehen erwartet. Dafür gibt es auch Punkte! Die Abgabe soll in Zweiergruppen erfolgen. Bitte geben Sie Ihre Namen, Matrikelnummern und das Tutorium (Tutor und Termin) an. Kreuzen Sie am Beginn des Tutoriums die mündlichen Aufgaben an, die Sie bearbeitet haben und an der Tafel vorrechnen können.

Aufgabe 38: Pendel mit rotierendem Aufhängepunkt I (mündlich)

Der Aufhängepunkt P eines ebenen Pendels der Masse m rotiert entlang eines Kreises mit konstanter Winkelgeschwindigkeit ω gegen den Uhrzeigersinn. Der Aufhängepunkt ist dabei bei t=0 an der Stelle (x=0,y=r). Das Pendel hat die Länge l.

- (a) Klassifizieren Sie die Zwangsbedingungen und stellen Sie den Ortsvektor \mathbf{x}_P sowie $\dot{\mathbf{x}_P}$ in dem gegebenem Koordinatensystem auf.
- (b) Bestimmen Sie die Lagrangefunktion L. Verwenden Sie den Winkel ϕ als generalisierte Koordinate. *Hinweis:* Verwenden Sie $\cos(a)\cos(b) + \sin(a)\sin(b) = \cos(a-b)$.
- (c) Zeigen Sie, dass die Lagrangesche Bewegungsgleichung 2. Art gegeben ist durch

$$ml^{2}\ddot{\phi} + rlm\omega^{2}\sin(\phi - \omega t) + mgl\sin\phi = 0.$$

(d) Welche Terme in L spielen in der Bewegungsgleichung keine Rolle?

Aufgabe 39 (8 Punkte): Pendel mit rotierendem Aufhängepunkt II (schriftlich, 2+2+2+2) Betrachten Sie weiterhin das Pendel aus Aufgabe 38.

- (a) Berechnen Sie den generalisierten Impuls bzgl. ϕ , sprich $p_{\phi}=\frac{\partial L}{\partial \dot{\phi}}$.
- (b) Stellen Sie die Funktion $H=p_{\phi}\dot{\phi}-L$ auf und schreiben Sie anschließend H als Funktion von ϕ und p_{ϕ} .
- (c) Zeigen Sie, dass die Bewegungsgleichung aus Aufgabe 38 (c) äquivalent zu dem Gleichungssystem

$$\dot{\phi} = \frac{\partial H}{\partial p_{\phi}} \; , \qquad \dot{p_{\phi}} = -\frac{\partial H}{\partial \phi}$$

ist.

(d) Berechnen Sie die totale Zeitableitung von H und von der Gesamtenergie E=T+V. Ist eine der Größen eine Erhaltungsgröße?

1

13. Übung TPI WS11

Aufgabe 40 (12 Punkte): Teilchen im Paraboloid (schriftlich 4+2+2+4) Ein Teilchen der Masse m bewegt sich reibungsfrei auf der Innenfläche eines Paraboloids, das durch

$$x^2 + y^2 = az, \quad a > 0$$

gegeben ist. Dabei wirkt die Gravitationsbeschleunigung g in negative z-Richtung.

- (a) Verwenden Sie Zylinderkoordinaten (ρ, φ, z) und wählen Sie geeignete verallgemeinerte Koordinaten. Stellen Sie die Lagrangeschen Bewegungsgleichungen 2. Art auf.
- (b) Berechnen Sie den Drehimpuls des Teilchens $\mathbf{L} = m\mathbf{r} \times \dot{\mathbf{r}}$. Zeigen Sie, dass der Drehimpuls in z-Richtung L_z sowie die Gesamtenergie E Erhaltungsgrößen des Systems sind.
- (c) Zeigen Sie, dass die Bewegung auf einer Kreisbahn mit $x^2+y^2=R^2$ und konstanter Winkelgeschwindigkeit ω eine Lösung der Lagrangegleichungen ist. Bestimmen Sie ω .
- (d) Bestimmen Sie mit Hilfe der Lagrangeschen Gleichungen 1. Art die Zwangskräfte Z_{ρ} , Z_{φ} und Z_{z} in Abhängigkeit von den generalisierten Koordinaten und Geschwindigkeiten.

Sprechzeiten:	Name	Tag	Zeit	Raum	Tel.
	Prof. Holger Stark	FR	11:30-12:30 Uhr	EW 709	29623
	Stefan Fruhner	FR	14:30-15:30 Uhr	EW 627/28	27681
	Niels Majer	DO	13:00-14:00 Uhr	ER 240	29052
	Max Schmitt	DO	10:00-11:00 Uhr	EW 708	25225
	Andreas Zöttl	MI	11:00-12:00 Uhr	EW 702	24253
	Christian Fräßdorf	DI	18:00-19:00 Uhr	EW 060	26143
	Benjamin Regler	MO	13:00-14:00 Uhr	EW 060	26143
	Wassilij Kopylov	MO	16:00-17:00 Uhr	EW 060	26143
	Emely Wiegand	МО	12:00-13:00 Uhr	EW 060	26143

Aktuelle Informationen werden auf der Webseite bekannt gegeben: http://www.tu-berlin.de/index.php?id=109406