Prof. Holger Stark,

Stefan Fruhner, Niels Majer, Maximilian Schmitt, Andreas Zöttl, Christian Fräßdorf, Wassilij Kopylov, Benjamin Regler, Emely Wiegand

4. Übungsblatt – Theoretische Physik I: Mechanik

Abgabe: Di. 15.11.2011 bis 8:30 Uhr, Briefkasten ER-Gebäude

Bei den schriftlichen Ausarbeitungen werden ausführliche Kommentare zum Vorgehen erwartet. Dafür gibt es auch Punkte! Die Abgabe soll in Zweiergruppen erfolgen. Bitte geben Sie Ihre Namen, Matrikelnummern und das Tutorium (Tutor und Termin) an. Kreuzen Sie am Beginn des Tutoriums die mündlichen Aufgaben an, die Sie bearbeitet haben und an der Tafel vorrechnen können.

Aufgabe 10 (10 Punkte): Newton'sche Reibung (schriftlich 2+2+4+2)

Betrachten Sie eine Kugel mit Radius R, die sich im freien Fall befindet. In Luft ist die Reibungskraft auf die bewegte Kugel proportional zum Quadrat der Geschwindigkeit

$$\mathbf{F}_{\mathsf{Newton}} = -1/2\rho c_w A v^2 \frac{\mathbf{v}}{v}.$$

Dabei ist ρ die Dichte des Mediums, c_w der Strömungswiderstandkoeffizient und A die Querschnittsfläche der Kugel.

- (a) Stellen Sie die Bewegungsgleichung (Differentialgleichung) für die Geschwindigkeit ${\bf v}$ auf.
- (b) Bestimmen Sie die stationären Lösungen mit $\mathbf{v} = const.$
- (c) Lösen Sie die DGL aus (a) für $\mathbf{v}(t)$ und $\mathbf{r}(t)$ für die Anfangsbedingung $\mathbf{v}(0) = 0$.
- (d) Geben Sie eine Näherung von $\mathbf{v}(t)$ und $\mathbf{r}(t)$ für große t an. Vergleichen Sie das Ergebnis mit der stationären Lösung.

Hinweis: Trennung der Veränderlichen ist ein Weg um die DGL zu lösen.

Aufgabe 11 (10 Punkte): Gravitationsfeld einer Kugel (schriftlich)

Die Kraft ${\bf F}$ auf eine Probemasse m im Feld einer Masse M (Massendichte $\rho({\bf r})$) ist gegeben durch

$$\mathbf{F}(\mathbf{r}) = m\mathbf{g}(\mathbf{r})$$
 mit $\operatorname{div} \mathbf{g}(\mathbf{r}) = -4\pi\gamma\rho(\mathbf{r})$.

Benutzen Sie den Satz von Gauß, um $\mathbf{g}(\mathbf{r})$ für eine Kugel (Radius R) mit homogener Massendichte $\rho(\mathbf{r}) = \rho_0 = const.$ zu bestimmen. Machen Sie dazu den Ansatz $\mathbf{g}(\mathbf{r}) = g(r)\mathbf{e}_r$ (Warum geht das?) und integrieren Sie über eine Kugel mit Radius r_0 .

Hinweis: Machen Sie eine Fallunterscheidung für $r_0 \leq R$.

4. Übung TPI WS11

Aufgabe (12): Potentiale (mündlich)

Ein Teilchen bewege sich im Potential U(x). Betrachten Sie folgende Potentiale

(1)
$$U(x) = \begin{cases} \infty & x < 0 \\ mgx & x > 0 \end{cases}$$
 (freier Fall),

(2)
$$U(x) = (x - x_0)^2 (x + x_0)^2$$
 (anharmonischer Oszillator),

(3)
$$U(x) = -\omega \cos(x)$$
 (Pendel),

$$(4) \qquad U(x) = 4\epsilon \left(\left(\frac{x_0}{x}\right)^{12} - \left(\frac{x_0}{x}\right)^{6} \right) \quad (x>0) \qquad \qquad \text{(Lennard-Jones-Potential)}.$$

- Geben Sie die stabilen und instabilen Ruhelagen an.
- In welchen Punkten wird der Betrag der Geschwindigkeit maximal/minimal?
- Für welche Gesamtenergien führt ein Teilchen im Potential Schwingungen durch?
- Zeichnen Sie qualitativ die Phasenporträts.

Vorlesung: DI und MI jeweils um 8:30 Uhr – 10:00 Uhr in EW 201.

Scheinkriterien: Mindestens 50% der schriftlichen Übungspunkte.

Mindestens 50% der mündlichen Aufgaben angekreuzt. Regelmäßige und aktive Teilnahme in den Tutorien.

Bestandene Klausur

	Destandene Mausur.				
Sprechzeiten:	Name	Tag	Zeit	Raum	Tel.
	Prof. Holger Stark	FR	11:30-12:30 Uhr	EW 709	29623
	Stefan Fruhner	FR	14:30-15:30 Uhr	EW 627/28	27681
	Niels Majer	DO	13:00-14:00 Uhr	ER 240	29052
	Max Schmitt	DO	10:00-11:00 Uhr	EW 708	25225
	Andreas Zöttl	MI	11:00-12:00 Uhr	EW 702	24253
	Christian Fräßdorf	DI	18:00-19:00 Uhr	EW 060	26143
	Benjamin Regler	MO	13:00-14:00 Uhr	EW 060	26143
	Wassilij Kopylov	MO	16:00-17:00 Uhr	EW 060	26143
	Emely Wiegand	MO	12:00-13:00 Uhr	EW 060	26143

Aktuelle Informationen werden auf der Webseite bekannt gegeben:

http://www.tu-berlin.de/index.php?id=109406