Prof. Holger Stark,

Stefan Fruhner, Niels Majer, Maximilian Schmitt, Andreas Zöttl, Christian Fräßdorf, Wassilij Kopylov, Benjamin Regler, Emely Wiegand

7. Übungsblatt – Theoretische Physik I: Mechanik

Abgabe: Di. 06.12.2011 bis 8:30 Uhr, Briefkasten ER-Gebäude

Bei den schriftlichen Ausarbeitungen werden ausführliche Kommentare zum Vorgehen erwartet. Dafür gibt es auch Punkte! Die Abgabe soll in Zweiergruppen erfolgen. Bitte geben Sie Ihre Namen, Matrikelnummern und das Tutorium (Tutor und Termin) an. Kreuzen Sie am Beginn des Tutoriums die mündlichen Aufgaben an, die Sie bearbeitet haben und an der Tafel vorrechnen können.

Aufgabe (19): Freier Fall auf der rotierenden Erde (mündlich)

Ein Massepunkt bewegt sich auf der Nordhalbkugel bei der geographischen Breite φ nahe der Erdoberfläche. Die Winkelgeschwindigkeit der Erde sei $\omega \mathbf{e}_z$, der Erdradius sei R. Auf der Erdoberfläche wird ein kartesisches Koordinatensystem (x',y',z') angebracht, wobei die x'-Achse nach Süden, die y'-Achse nach Osten, und die z'-Achse radial nach außen zeigen soll.

- (a) Drücken Sie \mathbf{e}_z mit Hilfe der geographischen Breite φ (oder des Polarwinkels $\theta = \frac{\pi}{2} \varphi$) und den Richtungen $(\mathbf{e}'_x, \mathbf{e}'_y, \mathbf{e}'_z)$ aus.
- (b) Verwenden Sie Ihr Ergebnis aus (a) um die Bewegungsgleichungen für die Komponenten x', y' und z' aufzustellen. Vernachlässigen Sie dabei Terme der Ordnung $\mathcal{O}(\omega^2)$.
- (c) Ein zunächst ruhender Körper werde aus der Höhe h_0 frei fallen gelassen. Lösen Sie die Bewegungsgleichungen unter der Voraussetzung, dass $\dot{x}'(t)$ und $\dot{y}'(t)$ während der Fallzeit klein bleiben.
- (d) Bestimmen Sie die von der Erdrotation bewirkte Ostabweichung!

Aufgabe 20 (8 Punkte): Coriolisbeschleunigung (schriftlich, 4+4)

- (a) Ein Fluss der Breite D fließt auf der Nordhalbkugel bei der geographischen Breite φ nach Norden. Die Strömungsgeschwindigkeit des Flusses beträgt v_0 . Wieviel liegt das rechte Flussufer höher als das linke? Welche Höhe ergibt sich für $D=2km, v_0=5km/h$ und $\varphi=45^{\circ}$?
- (b) Ein ICE mit einer Masse $M=4\cdot 10^6kg$ fährt auf der Rheintalstrecke von Karlsruhe nach Basel mit v=200km/h genau von Nord nach Süd. Wie groß ist die Corioliskraft auf die Schienen? In welcher Richtung wirkt sie?

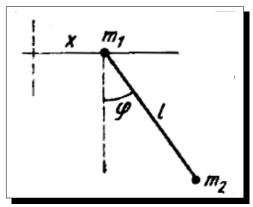
7. Übung TPI WS11

Aufgabe 21 (12 Punkte): Gesamtenergie eines Systems von Massepunkten (schriftlich, 6+6) Betrachten Sie die folgenden Massenpunktsysteme im homogenen Schwerefeld mit der Schwerebeschleunigung $\mathbf{g} = (0, -g)^T$.

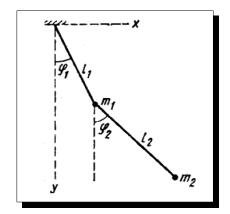
(a) Ebenes Pendel mit der Masse m_2 . Der Aufhängepunkt mit der Masse m_1 sei beweglich gelagert, so dass er sich reibungsfrei auf einer horizontalen Geraden entlang der x-Achse bewegen kann. Die Pendelbewegung findet in der xy-Ebene statt.

(1)
$$E_{kin} = \frac{m_1 + m_2}{2}\dot{x}^2 + \frac{m_2}{2}\left(l^2\dot{\phi}^2 + 2l\dot{x}\dot{\varphi}\cos\varphi\right)$$

(2)
$$E_{pot} = -m_2 g l \cos \varphi$$


(b) Doppelpendel, das ebenfalls in der xy-Ebene schwingt.

(3)
$$E_{kin} = \frac{m_1 + m_2}{2} l_1^2 \dot{\varphi}_1^2 + \frac{m_2}{2} l_2^2 \dot{\varphi}_2^2 + m_2 l_1 l_2 \dot{\varphi}_1 \dot{\varphi}_2 \cos(\varphi_1 - \varphi_2)$$


(4)
$$E_{pot} = -(m_1 + m_2)gl_1\cos\varphi_1 - m_2gl_2\cos\varphi_2$$

Zeigen Sie, dass für beide Fälle die kinetische und potenzielle Energie durch die angegebenen Ausdrücke darstellbar sind.

Hinweis: Drücken Sie zunächst die Ortsvektoren der Massepunkte durch die Pendellängen und die Auslenkungswinkel aus (siehe Abbildungen).

Ebenes Pendel mit beweglicher Aufhängung

Doppelpendel

Sprechzeiten:	Name	Tag	Zeit	Raum	Tel.
	Prof. Holger Stark	FR	11:30-12:30 Uhr	EW 709	29623
	Stefan Fruhner	FR	14:30-15:30 Uhr	EW 627/28	27681
	Niels Majer	DO	13:00-14:00 Uhr	ER 240	29052
	Max Schmitt	DO	10:00-11:00 Uhr	EW 708	25225
	Andreas Zöttl	MI	11:00-12:00 Uhr	EW 702	24253
	Christian Fräßdorf	DI	18:00-19:00 Uhr	EW 060	26143
	Benjamin Regler	MO	13:00-14:00 Uhr	EW 060	26143
	Wassilij Kopylov	MO	16:00-17:00 Uhr	EW 060	26143
	Emely Wiegand	MO	12:00-13:00 Uhr	EW 060	26143

Aktuelle Informationen werden auf der Webseite bekannt gegeben: http://www.tu-berlin.de/index.php?id=109406