Prof. Dr. Harald Engel Dipl. Phys. Mathias Hayn Wassilij Kopylov, M.Sc. Jan Totz, M.Sc.

3. Übungsblatt – Quantenmechanik II

Abgabe: Di. 20. 11. 2012 bis 18:00 Uhr im Briefkasten am Ausgang des ER-Gebäudes

Bei den schriftlichen Ausarbeitungen werden ausführliche Kommentare zum Vorgehen erwartet. Dafür gibt es auch Punkte! Die Abgabe soll in 3er-Gruppen erfolgen. Bitte geben Sie Ihre Namen, Matrikelnummer und das Tutorium an!

Aufgabe 7 (5 Punkte): Transformationsverhalten der Spinoren

Wie in Aufgabe 6 betrachten wir auch in dieser Aufgabe infinitesimale Lorentz-Transformationen in der x^{α} - x^{β} -Ebene mit festen $\alpha,\beta\in\{1,2,3\}$, welche durch den Parameter $\theta\ll 1$ charakterisiert seien. Benutzen Sie die Ergebnisse für infinitesimale Lorentz-Transformationen aus Aufgabe 6 und zeigen Sie, dass sich der Spinor $\psi(x)$ im ersten Inertialsystem durch den Spinor $\psi'(x)$ im zweiten Inertialsystem durch

$$\psi(x) = S_{\alpha\beta}^{-1}(\theta) \cdot \psi'(x') \approx \left(\mathbb{1} + i \theta \left[\hat{O}_1 \mathbb{1} + \hat{O}_2 \right] \right) \cdot \psi'(x) \tag{1}$$

darstellen lässt und interpretieren Sie den dabei auftretenden skalaren \hat{O}_1 und Matrix-wertigen Operator \hat{O}_2 . Für die Interpretation von \hat{O}_2 kann es nützlich sein, eine explizite Darstellung für die γ -Matrizen zu wählen.

Aufgabe 8 (9 Punkte): Relativistisches Wasserstoffatom - Teil 1

Das Ziel dieser und einer Aufgabe auf dem nächsten Ubungsblatt besteht darin, das Energiespektrum des Wasserstoffatoms mithilfe der stationären Dirac-Gleichung auszurechnen. Wir setzen hier $c=\hbar=1$. Betrachten Sie die Dirac-Gleichung im Coulomb-Potential, $V(r)=-\frac{Z\alpha}{r},~\alpha$ ist die schon bekannte Feinstrukturkonstante. Zur Lösung nehmen wir folgenden Ansatz für den

ist die schon bekannte Feinstrukturkonstante. Zur Lösung nehmen wir folgenden Ansatz für den Eigenvektor an: $\psi_{j,m_j}^\pm = \begin{pmatrix} i \frac{G(r)}{r} \, \phi_{j,m_j}^\pm \\ \frac{F(r)}{r} \cdot \left(\frac{\boldsymbol{\sigma} \cdot \mathbf{x}}{r}\right) \phi_{j,m_j}^\pm \end{pmatrix}$, wobei ϕ_{j,m_j}^\pm zweier-Spinoren sind und die Eigenwertgleichungen

$$\mathbf{J}^2 \phi_{j,m_i}^{\pm} = j(j+1)\phi_{j,m_i}^{\pm},\tag{2}$$

$$\mathbf{L}^{2}\phi_{j,m_{i}}^{\pm} = l(l+1)\phi_{j,m_{i}}^{\pm},\tag{3}$$

$$J_z \phi_{j,m_i}^{\pm} = m_j \phi_{j,m_i}^{\pm}, \tag{4}$$

$$\mathbf{S}^2 \phi_{j,m_j}^{\pm} = \frac{1}{2} \left(\frac{1}{2} + 1 \right) \phi_{j,m_j}^{\pm}, \tag{5}$$

mit $j=\frac{1}{2},\frac{3}{2},...,\ l=j\mp\frac{1}{2}$ und $m_j=-j,...,j$ erfüllen. Zur Erinnerung, der Gesamtdrehimpuls ist durch $\mathbf{J}=\mathbf{L}\mathbb{1}+\mathbf{S}$ gegeben, mit $S_i=\frac{1}{2}\left(\begin{array}{cc}\sigma_{\mathbf{i}}&0\\0&\sigma_{\mathbf{i}}\end{array}\right)$.

- 1. Zeigen Sie zuerst folgende Relationen. Beachten Sie dabei, dass $\mathbf{x}^2 = r^2$ ist.
 - (a) $\mathbf{L}\cdot \pmb{\sigma}\,\phi_{j,m_j}^\pm=[-1\pm(j+\frac{1}{2})]\phi_{j,m_j}^\pm.$ Tipp: Benutzen Sie dazu $\mathbf{J}^2.$
 - (b) $\boldsymbol{\sigma} \cdot \mathbf{p} \, f(r) \phi_{j,m_j}^{\pm} = -i \frac{\boldsymbol{\sigma} \cdot \mathbf{x}}{r^2} \left[r \frac{\partial}{\partial r} + 1 \mp (j+1/2) \right] f(r) \phi_{j,m_j}^{\pm}$, Tipp: Zeigen und Benutzen Sie dazu $1 = (\boldsymbol{\sigma} \cdot \mathbf{x}/r) \, (\boldsymbol{\sigma} \cdot \mathbf{x}/r)$.
 - (c) und $(\boldsymbol{\sigma}\cdot\mathbf{p})(\boldsymbol{\sigma}\cdot\frac{\mathbf{x}}{r})f(r)\phi_{j,m_{j}}^{\pm}=-\frac{i}{r}\left[r\frac{\partial}{\partial r}+1\pm(j+\frac{1}{2})\right]f(r)\phi_{j,m_{j}}^{\pm}$

Rückseite beachten!

3. Übung TPV WS12/13

2. Jetzt können wir das stationäre Eigenwertproblem $H\psi_{j,m_j}^{\pm}=E\psi_{j,m_j}^{\pm}$ betrachten. Leiten Sie nun unter Zuhilfenahme der gerade gezeigten Beziehungen ein Differentialgleichungssystem für die Funktionen G und F ab. Benutzen Sie dazu H in der Matrixdarstellung, also

$$H = \left(\begin{array}{cc} m_0 + V & \boldsymbol{\sigma} \cdot \mathbf{p} \\ \boldsymbol{\sigma} \cdot \mathbf{p} & -m_0 + V \end{array} \right) \,.$$

Benutzen Sie anschließend folgende Substitutionen (auf richtige Substitution der Ableitung achten!) $\alpha_1=m_0+E, \alpha_2=m_0-E, \sigma=\sqrt{m_0^2-E^2}=\sqrt{\alpha_1\alpha_2}, \rho=r\sigma, k=\pm(j+\frac{1}{2}), \gamma=Z\alpha$. In dieser Sprache erhält das Differentialgleichungssystem folgende Form

$$\left(\frac{d}{d\rho} + \frac{k}{\rho}\right)F - \left(\frac{\alpha_2}{\sigma} - \frac{\gamma}{\rho}\right)G = 0, \tag{6}$$

$$\left(\frac{d}{d\rho} - \frac{k}{\rho}\right)G - \left(\frac{\alpha_1}{\sigma} + \frac{\gamma}{\rho}\right)F = 0.$$
 (7)

Die Fortsetzung folgt auf dem nächsten Übungsblatt.

Vorlesung: Di. um 8:30 Uhr – 10:00 Uhr in EW 203, Do. um 8:30 Uhr – 10:00 Uhr in EW 203.

Scheinkriterien:

- ullet Mindestens 50% der schriftlichen Übungspunkte.
- Regelmäßige und aktive Teilnahme in den Tutorien (u.a. mindestens einmal vorrechnen).

Sprechzeiten:

9 - 00 - 12 - 10 - 11					
	Name	Tag	Zeit	Raum	Tel.
	Prof. Dr. Harald Engel	Mi	14:30 – 16:00 Uhr	EW 738	79462
	Mathias Hayn	Мо	15:00 – 17:00 Uhr	EW 711	27884
	Wassilij Kopylov		nach Vereinbarung	EW 705	26143
	Jan Totz		nach Vereinbarung	EW 627	27681