Prof. Dr. Harald Engel Dipl. Phys. Mathias Hayn Wassilij Kopylov, M.Sc. Jan Totz, M.Sc.

5. Übungsblatt - Quantenmechanik II

Abgabe: Di. 4. 12. 2012 bis 18:00 Uhr im Briefkasten am Ausgang des ER-Gebäudes

Bei den schriftlichen Ausarbeitungen werden ausführliche Kommentare zum Vorgehen erwartet. Dafür gibt es auch Punkte! Die Abgabe soll in 3er-Gruppen erfolgen. Bitte geben Sie Ihre Namen, Matrikelnummer und das Tutorium an!

Aufgabe 11 (10 Punkte): Lagrange für Felder

Betrachten Sie ein System aus N verschiedenen elementaren Feldern ψ_k ($k \in [1, N]$) (z.B. Elektronen und Ionen) mit Ladung q_k , die mit dem elektromagnetischen Feld wechselwirken. Leiten Sie ausgehend von der Lagrange-Dichte $\mathcal{L} = \mathcal{L}\left(\psi_k, \psi_k^*, \mathbf{A}, \phi\right)$

$$\mathcal{L} = \sum_{k=1}^{N} \left\{ \frac{1}{2m_k} \left(\frac{\hbar}{i} \nabla \psi_k - q_k \mathbf{A} \psi_k \right) \left(\frac{\hbar}{i} \nabla \psi_k^* + q_k \mathbf{A} \psi_k^* \right) - \frac{\hbar}{2i} \left[\psi_k^* \partial_t \psi_k - (\partial_t \psi_k^*) \psi_k \right] - \psi_k^* V \psi_k \right\}$$

$$+ \frac{\varepsilon_0}{2} \mathbf{E}^2 - \frac{1}{2\mu_0} \mathbf{B}^2 - \sum_{k=1}^{N} \psi_k^* q_k \phi \psi_k \quad (1)$$

die Potentialgleichungen für ${\bf A}$ und ϕ , die inhomogenen Maxwell-Gleichungen als auch die Schrödinger-Gleichung her.

Aufgabe 12 (10 Punkte): Quantisierung der Saitenschwingung

Im Tutorium wurde gezeigt, dass die Lagrange-Funktion einer linearen Kette in einer Dimension, deren Teilchen sich im harmonischen Potential befinden und an deren nächste Nachbar harmonisch koppeln, im kontinuierlichen Limes (d.h. wo die Anzahl der Atome $\to \infty$, Abstand der Atome $\to 0$, so dass die Länge l gleich bleibt) und mit periodischer Randbedingung folgende Form hat:

$$L = \int_0^l \mathcal{L} \, \mathrm{d}r \quad \text{mit der Langrangedichte} \quad \mathcal{L} = \frac{\rho \dot{\Phi}^2}{2} - \frac{\rho c^2}{2} (\partial_x \Phi)^2 - \frac{\rho \Omega_0^2}{2} \Phi^2 \,. \tag{2}$$

ho ist die Dichte, c die Schallgeschwindigkeit, Ω_0 charakterisiert das eigene Potential der Teilchen, $\Phi=\Phi(x,t)$ ist ein skalares Feld, das die Auslenkung der Saite am Ort x zur Zeit t beschreibt. Quantisieren Sie diese Langrange-Funktion, indem Sie folgende Schritte befolgen.

- 1. Bestimmen sie den generalisierten Impuls $\Pi(x,t)$ mithilfe der Langrange-Dichte.
- 2. Jetzt gehen wir von zahlenwertigen Feldern zu Feldoperatoren über, d.h. $\Phi \to \dot{\Phi}, \Pi \to \dot{\Pi}$ und fordern folgende Vertauschungsrelation $[\dot{\Phi}(x,t), \dot{\Pi}(x',t)] = i\hbar\delta(x-x')$. Bestimmen Sie nun mithilfe der Legendre-Transformation zuerst die Hamilton-Dichte und schreiben Sie danach den vollen Hamilton-Operator \hat{H} hin.
- 3. Wir entwickeln jetzt die Feldoperatoren nach einem vollständigen System auf folgende Weise $(k \in \mathbb{N})$:

$$\hat{\Phi} = \frac{1}{\sqrt{l}} \sum_{k} e^{ikx} \hat{\phi}_k \quad \text{und} \quad \hat{\Pi} = \frac{1}{\sqrt{l}} \sum_{k} e^{-ikx} \hat{\pi}_k \,. \tag{3}$$

(a) Begründen/Zeigen Sie, warum $\hat{\phi}_k^\dagger=\hat{\phi}_{-k}$ und $\hat{\pi}_k^\dagger=\hat{\pi}_{-k}$ gelten muss.

5. Übung TPV WS12/13

(b) Zeigen Sie, dass $[\hat{\phi}_k,\hat{\pi}_{k'}]=i\hbar\delta_{k,k'}$ gilt. Zeigen Sie nun dass Ihr Hamilton-Operator in neuer Basis folgende Form hat

$$\hat{H} = \sum_{k} \left(\frac{1}{2\rho} \hat{\pi}_{k} \hat{\pi}_{-k} + \frac{1}{2} \rho \omega_{k}^{2} \hat{\phi}_{k} \hat{\phi}_{-k} \right). \tag{4}$$

Wie hängt der neu eingeführte Parameter ω_k mit den alten Parametern zusammen?

4. Jetzt machen wir noch einen Basiswechsel in dem Hamilton-Operator (4). Wir definieren (z.B. motiviert vom harmonischen Oszillator in QM I)

$$\hat{a}_k = \sqrt{\frac{\rho\omega_k}{2\hbar}}(\hat{\phi}_k + \frac{i}{\omega_k\rho}\hat{\pi}_{-k}) \tag{5}$$

- (a) Benutzen Sie (5), um mithilfe von $\hat{a}_{\pm k}^{(\dagger)}$, $\hat{\phi}_{\pm k}$ und $\hat{\pi}_{\pm k}$ auszudrücken.
- (b) Zeigen Sie folgende Vertauschungsrelationen $[\hat{a}_k, \hat{a}_{k'}^{\dagger}] = \delta_{k,k'}$ und $[\hat{a}_k, \hat{a}_{k'}] = 0$.
- (c) Schreiben Sie nun den Hamilton-Operator (4) in der neu eingeführten Basis auf. Sie müssten auf

$$\hat{H} = \sum_{k} \hbar \omega_k \left(\hat{a}_k^{\dagger} \hat{a}_k + \frac{1}{2} \right) \tag{6}$$

kommen.

- 5. Interpretieren Sie das Ergebnis, in dem Sie u.a. auf die Bedeutung von $\hat{H}, a_k^{(\dagger)}$ eingehen. Gibt es hier Zustände mit negativer Energie?
- 6. Drücken Sie den Feldoperator für die Auslenkung $\hat{\phi}(x,t=0)$ mithilfe der neuen Basis $a_k^{(\dagger)}(t=0)$ aus. Wie kann man diesen Feldoperator zeitlich entwickeln? Tipp: Benutzen Sie mit Begründung $\hat{a}_k(t) = \hat{a}_k(0) \cdot e^{-i\omega_k t}$. Wie groß ist der Erwartungswert der Auslenkung in einem Eigenzustand des Hamiltonians aus (6). Interpretieren Sie das Ergebnis.

Vorlesung: Di. um 8:30 Uhr – 10:00 Uhr in EW 203, Do. um 8:30 Uhr – 10:00 Uhr in EW 203.

Scheinkriterien:

- Mindestens 50% der schriftlichen Übungspunkte.
- Regelmäßige und aktive Teilnahme in den Tutorien (u.a. mindestens einmal vorrechnen).

Sprechzeiten:

Name	Tag	Zeit	Raum	Tel.
Prof. Dr. Harald Engel	Mi	14:30 – 16:00 Uhr	EW 738	79462
Mathias Hayn	Мо	15:00 – 17:00 Uhr	EW 711	27884
Wassilij Kopylov		nach Vereinbarung	EW 705	26143
Jan Totz		nach Vereinbarung	EW 627	27681