Prof. Dr. Harald Engel Dipl. Phys. Mathias Hayn Wassilij Kopylov, M.Sc. Jan Totz, M.Sc.

6. Übungsblatt - Quantenmechanik II

Abgabe: Di. 11. 12. 2012 bis 18:00 Uhr im Briefkasten am Ausgang des ER-Gebäudes

Bei den schriftlichen Ausarbeitungen werden ausführliche Kommentare zum Vorgehen erwartet. Dafür gibt es auch Punkte! Die Abgabe soll in 3er-Gruppen erfolgen. Bitte geben Sie Ihre Namen, Matrikelnummer und das Tutorium an!

Aufgabe 13 (13 Punkte): Zur zweiten Quantisierung

Der Hamilton-Operator in zweiter Quantisierung, ausgedrückt durch Feldoperatoren $\hat{\Psi}(\mathbf{r})$, kann in der Form $\hat{H}=\hat{H}_1+\hat{H}_2$ mit

$$\hat{H}_1 = \int_V d^3 r \,\hat{\Psi}^{\dagger}(\mathbf{r}) \,\hat{h}(\mathbf{r}) \,\hat{\Psi}(\mathbf{r}), \quad \hat{H}_2 = \int_V d^3 r_1 \int_V d^3 r_2 \,\hat{\Psi}^{\dagger}(\mathbf{r}_1) \,\hat{\Psi}^{\dagger}(\mathbf{r}_2) \,\hat{u}(\mathbf{r}_1, \mathbf{r}_2) \,\hat{\Psi}(\mathbf{r}_2) \,\hat{\Psi}(\mathbf{r}_1) \quad (1)$$

geschrieben werden. Dabei ist \hat{H}_1 (\hat{H}_2) der sogenannte Ein-Teilchen-(Zwei-Teilchen-)Hamilton-Operator, $\hat{h}(\mathbf{r}) = -\frac{\hbar^2 \triangle}{2m} + V(r)$, V(r) ein Ein-Teilchen-Potential und $\hat{u}(\mathbf{r}_1, \mathbf{r}_2)$ steht für eine Zwei-Teilchen-Wechselwirkung.

(a) Die Feldoperatoren lassen sich mithilfe eines vollständigen Orthonormalsystems $\varphi_n(\mathbf{r})$ durch Auf- und Absteigeoperatoren durch $\hat{\Psi}(\mathbf{r}) = \sum_n \varphi_n(\mathbf{r}) \, \hat{a}_n$ darstellen. Zeigen Sie umgekehrt, dass

$$\hat{a}_n^{\dagger} = \int_V d^3 r \, \varphi_n(\mathbf{r}) \, \hat{\Psi}^{\dagger}(\mathbf{r}) \tag{2}$$

gilt.

(b) Drücken Sie den Hamilton-Operator (1) durch die Auf- und Absteigeoperatoren aus, $\hat{H}_1 = \sum_{n_1,n_2} h_{n_1,n_2} \hat{a}^{\dagger}_{n_1} \, \hat{a}_{n_2}$ und $\hat{H}_2 = \sum_{n_1,n_2,n_3,n_4} u_{n_1,n_2,n_3,n_4} \hat{a}^{\dagger}_{n_1} \, \hat{a}^{\dagger}_{n_2} \, \hat{a}_{n_3} \, \hat{a}_{n_4}$ und bestimmen Sie h_{n_1,n_2} und u_{n_1,n_2,n_3,n_4} .

Wir betrachten nun den Spezialfall $V(\mathbf{r})=0$. Dann bilden ebene Wellen $\varphi_{\mathbf{k}}(\mathbf{r})=\frac{1}{\sqrt{V}}\mathrm{e}^{i\mathbf{k}\cdot\mathbf{r}}$ Eigenzustände des Ein-Teilchen-Hamilton-Operators $\hat{h}(\mathbf{r})$. Außerdem soll das Zwei-Teilchen-Wechselwirkungspotential nur vom Abstand abhängen, $\hat{u}(\mathbf{r}_1,\mathbf{r}_2)=\hat{u}(\mathbf{r}_1-\mathbf{r}_2)=u(\mathbf{r}_1-\mathbf{r}_2)$.

(c) Zeigen Sie, dass der Hamilton-Operator aus Teilaufgabe (b) sich dann zu

$$\hat{H}_1 = \sum_{\mathbf{k}} h_{\mathbf{k}} \, \hat{a}_{\mathbf{k}}^{\dagger} \, \hat{a}_{\mathbf{k}}, \quad \hat{H}_2 = \sum_{\mathbf{k}, \mathbf{k}', \mathbf{q}} u_{\mathbf{q}} \, \hat{a}_{\mathbf{k}+\mathbf{q}}^{\dagger} \, \hat{a}_{\mathbf{k}'-\mathbf{q}}^{\dagger} \, \hat{a}_{\mathbf{k}'} \, \hat{a}_{\mathbf{k}}$$
(3)

vereinfacht und interpretieren Sie den Wechselwirkungs-Hamilton-Operator \hat{H}_2 . Hierbei ist $u_{\mathbf{q}}$ die Fourier-Transformierte des Wechselwirkungspotentials $u(\mathbf{r})$.

(d) Sei nun $|0\rangle$ der Vakuumzustand, d.h. $\hat{a}_{\mathbf{k}}\,|0\rangle=0,\ \forall\,\mathbf{k}.$ Zeigen Sie explizit, dass der Zustand $\hat{a}_{\mathbf{k}}^{\dagger}\,|0\rangle$ ein Teilchen mit dem Impuls $\hbar\mathbf{k}$ beschreibt. Zeigen Sie entsprechend, dass $\hat{a}_{\mathbf{k}_1}^{\dagger}\,a_{\mathbf{k}_2}^{\dagger}\,|0\rangle$ ein Zwei-Teilchenzustand mit den Impulsen \mathbf{k}_1 und \mathbf{k}_2 darstellt. Hinweis: Sie können dazu die in der Vorlesung eingeführte Vielteilchenwellenfunktion/Wahrscheinlichkeitsamplitude $\Phi_{[n_1,n_2,\ldots]}^{(n)}$ benutzen.

- 6. Übung TPV WS12/13
 - (e) Benutzen Sie allein die (Anti-)Vertauschungsrelationen der Erzeuger und Vernichter um die Norm, die Energie und den Gesamtimpuls der beiden Zustände aus Teilaufgabe (d) zu bestimmen. Hinweis: der Operator des Gesamtimpulses ist durch $\hat{\mathbf{P}} = \int_V \mathrm{d}^3 r \, \hat{\Psi}^\dagger(\mathbf{r}) \, \hat{\mathbf{p}} \, \hat{\Psi}(\mathbf{r})$, mit dem Ein-Teilchen-Impulsoperator $\hat{\mathbf{p}}$ gegeben.

Aufgabe 14 (7 Punkte): Variationsverfahren für Helium-Grundzustand

Wir betrachten ein Helium-Atom, d.h. ein System aus zwei Elektronen mit den Ortskoordinaten ${\bf r}_1$ und ${\bf r}_2$ und einem Kern der Ladung Z=2 am Ort ${\bf R}=0$. Der Hamilton-Operator der zwei Elektronen sei gegeben durch

$$H = -\frac{\hbar^2}{2m_e}(\Delta_1 + \Delta_2) + \frac{e^2}{4\pi\epsilon_0} \left(-\frac{Z}{|\mathbf{r}_1|} - \frac{Z}{|\mathbf{r}_2|} + \frac{1}{|\mathbf{r}_1 - \mathbf{r}_2|} \right).$$

Um die Grundzustands-Wellenfunktion des Helium-Atoms näherungsweise zu bestimmen, benutzen wir den folgenden Ansatz: $\Psi(\mathbf{r}_1, \mathbf{r}_2, Z_{\text{eff}}) = \psi_{100}(\mathbf{r}_1, Z_{\text{eff}}) \psi_{100}(\mathbf{r}_2, Z_{\text{eff}})$, wobei

$$\psi_{100}(\mathbf{r}, Z_{\text{eff}}) := 2 \left(\frac{Z_{\text{eff}}}{a_0}\right)^{3/2} e^{-\frac{Z_{\text{eff}}}{a_0}|\mathbf{r}|} \frac{1}{\sqrt{4\pi}}$$

die Grundzustands-Wellenfunktion eines Elektrons im Feld eines Kernes mit Ladung Z_{eff} ist.

(a) Zeigen Sie, dass die Variation des Parameters $Z_{\rm eff}$ nach dem Ritz'schen Variationsverfahren (Minimierung des Energieerwartungswertes für einen Satz von Testfunktionen zur Approximierung der Grundzustandsenergie, siehe Tutorium) zu einem Extremum bei $Z_{\rm eff}=Z-5/16$ führt und daraus der Näherungswert

$$E_g = \min\left(\frac{\langle \Psi|H|\Psi\rangle}{\langle \Psi|\Psi\rangle}\right) = \left[-2Z^2 + \frac{5}{4}Z - 2\left(\frac{5}{16}\right)^2\right] \text{Ry}$$

für die Grundzustandsenergie des Helium-Atoms folgt (1 Ry \approx 13.6 eV).

- (b) Berechnen Sie die Grundzustands-Energiekorrektur des Helium-Atoms durch die Elektron-Elektron-Wechselwirkung in 1. Ordnung Störungstheorie. Vergleichen Sie diesen Wert mit dem Ergebnis aus der Variationsrechnung und dem experimentellen Wert $E_g=-78.975$ eV.
- (c) Wie lässt sich anschaulich erklären, dass der Wert von $Z_{\rm eff}$ gegenüber der Kernladung Z=2 des Helium-Atoms reduziert ist?

Hinweis: Im Tutorium wird gezeigt

$$\int_{\mathbb{R}^3} \int_{\mathbb{R}^3} \frac{|\Psi(\mathbf{r}_1, \mathbf{r}_2, Z_{\text{eff}})|^2}{|\mathbf{r}_1 - \mathbf{r}_2|} d^3 r_1 d^3 r_2 = \frac{5}{8} \frac{Z_{\text{eff}}}{a_0}.$$

2