Prof. Dr. Harald Engel Dipl. Phys. Mathias Hayn Wassilij Kopylov, M.Sc. Jan Totz, M.Sc.

8. Übungsblatt - Quantenmechanik II

Abgabe: Di. 15. 1. 2013 bis 18:00 Uhr im Briefkasten am Ausgang des ER-Gebäudes

Bei den schriftlichen Ausarbeitungen werden ausführliche Kommentare zum Vorgehen erwartet. Dafür gibt es auch Punkte! Die Abgabe soll in 3er-Gruppen erfolgen. Bitte geben Sie Ihre Namen, Matrikelnummer und das Tutorium an!

Aufgabe 17 (9 Punkte): Elektronen-Emission

Für zeitabhängige Störungen der Form $\hat{H}_{\rm int}(t) = \hat{H}_{\rm int}\,{\rm e}^{-i\omega t}$ leitet man mit Hilfe der ersten Ordnung zeitabhängiger Störungstheorie die sogenannte Fermis Goldene Regel (FGR) ab:

$$R_{i \to f} = \frac{2\pi}{\hbar} \left| \langle f | \hat{H}_{\text{int}} | i \rangle \right|^2 \delta \left(E_f - E_i - \hbar \omega \right). \tag{1}$$

Mithilfe der FGR lässt sich die Rate $R_{i \to f}$ berechnen, mit welcher der Anfangszustand $|i\rangle$ in den Endzustand $|f\rangle$ (mit $\langle i|f\rangle=0$) unter Wirkung der Störung $\hat{H}_{\rm int}$ übergeht. Dabei sind E_i und E_f die Energien des Anfangs-, bzw. des Endzustands.

Betrachten Sie ein Wasserstoffatom, welches sich zu Beginn im Grundzustand befindet. Dieses wechselwirkt in einem endlichen aber beliebig großen Volumen V mit einem elektromagnetischen Feld der Form $\mathbf{A}(\mathbf{r},t) = \mathbf{A}_0 \cos(\mathbf{K} \cdot \mathbf{r} - \omega t), \Phi(\mathbf{r},t) = 0.$

(a) Untersuchen Sie den Prozess, dass das Elektron durch die Wechselwirkung aus dem Atom herausgeschlagen wird und als freies Teilchen mit dem Impuls \mathbf{p}_f beschrieben werden kann. Zeigen Sie, dass für diesen Prozess die Rate in SI-Einheiten durch

$$R_{i\to f} = \frac{32\pi^2 q^2 a_0^3 |\mathbf{A}_0 \cdot \mathbf{p}_f|^2}{V m_e^2 \hbar \left[1 + (p_f a_0/\hbar)^2\right]^4} \,\delta(E_f - E_i - \hbar \,\omega) \tag{2}$$

gegeben ist. Hier sind q und m_e die Ladung und Masse des Elektrons und a_0 ist der Bohr'sche Radius. Vernachlässigen Sie dabei den ${\bf A}^2$ -Term im Hamilton-Operator und nehmen Sie $|{\bf K}|a_0\ll 1$ an.

(b) Zeigen Sie anschließend, dass die Rate für den Übergang des Elektrons in einen Zustand mit einem beliebigen Impuls durch

$$R_i = \frac{8a_0^3 q^2 p_f^3 |\mathbf{A}_0|^2}{3m_e \hbar^4 [1 + (p_f a_0/\hbar)^2]^4},$$
(3)

mit $p_f = \sqrt{2m_e(E_i + \hbar\omega)}$ gegeben ist.

(c) In SI-Einheiten berechnet sich der zugehörige Wirkungsquerschnitt σ gemäß

$$\sigma = \frac{2}{\omega^2 \varepsilon_0 c |\mathbf{A}_0|^2} \, \hbar \omega \, R_i. \tag{4}$$

Dabei ist ε_0 die elektrische Feldkonstante und c ist die Lichtgeschwindigkeit. Bestimmen Sie σ . Geben Sie außerdem eine Formel für den Wirkungsquerschnitt in Einheiten von πa_0^2 als Funktion von $\hbar \omega$ in Einheiten von Ry an und zeichnen Sie diese in einem geeigneten Bereich.

8. Übung TPV WS12/13

Aufgabe 18 (8 Punkte): Zeitabhängige Störungstheorie

Betrachten Sie einen eindimensionalen harmonischen Oszillator der Frequenz ω_0 , welcher für Zeiten t<0 in seinem Grundzustand ist. Für Zeiten $t\geq0$ wird der Oszillator durch eine harmonische Kraft

$$F(t) = F_0 \cos \omega t \tag{5}$$

angetrieben. Die Stärke F_0 und die Frequenz ω sind dabei konstant. Behandeln Sie diesen Antrieb störungstheoretisch und berechnen Sie die Auslenkung $\langle \hat{x}(t) \rangle$ mit Hilfe der ersten Ordnung der zeitabhängigen Störungstheorie. Diskutieren Sie Ihr Eregbnis.

Vorlesung: Di. um 8:30 Uhr – 10:00 Uhr in EW 203, Do. um 8:30 Uhr – 10:00 Uhr in EW 203.

Scheinkriterien:

- ullet Mindestens 50% der schriftlichen Übungspunkte.
- Regelmäßige und aktive Teilnahme in den Tutorien (u.a. mindestens einmal vorrechnen).

Sprechzeiten:

Name	Tag	Zeit	Raum	Tel.
Prof. Dr. Harald Engel	Mi	14:30 – 16:00 Uhr	EW 738	79462
Mathias Hayn		nach Vereinbarung	EW 711	27884
Wassilij Kopylov		nach Vereinbarung	EW 705	26143
Jan Totz		nach Vereinbarung	EW 627	27681