Prof. Dr. Harald Engel Dipl. Phys. Mathias Hayn Wassilij Kopylov, M.Sc. Jan Totz, M.Sc.

9. Übungsblatt – Quantenmechanik II

Abgabe: Di. 22. 1. 2013 bis 18:00 Uhr im Briefkasten am Ausgang des ER-Gebäudes

Bei den schriftlichen Ausarbeitungen werden ausführliche Kommentare zum Vorgehen erwartet. Dafür gibt es auch Punkte! Die Abgabe soll in 3er-Gruppen erfolgen. Bitte geben Sie Ihre Namen, Matrikelnummern und das Tutorium an!

Aufgabe 19 (11 Punkte): Spontane Emission

In dieser Aufgabe soll die spontane Emission eines Photons bei dem Übergang eines Wasserstoffatoms von einem 2p-Zustand in den 1s-Zustand betrachtet und die Rate dieses Prozesses berechnet werden. Die Rechnungen der Aufgabenteile (a) bis (c) sind in atomaren Einheiten auszuführen, d.h. Masse und Ladung des Elektrons und \hbar sind gleich Eins, und die Lichtgeschwindigkeit ist durch die Inverse der Feinstrukturkonstante α gegeben. Der Hamilton-Operator lautet dann:

$$\hat{H} = \hat{H}_0 + \hat{H}_{\text{int}},\tag{1}$$

mit

$$\hat{H}_0 = \hat{H}_{\text{atom}} + \sum_{\mathbf{k},\sigma} \frac{k}{\alpha} \hat{a}_{\mathbf{k},\sigma}^{\dagger} \, \hat{a}_{\mathbf{k},\sigma} \text{ und}$$
 (2)

$$\hat{H}_{\text{int}} = \sum_{\mathbf{k},\sigma} g_{\mathbf{k}} \left(\varepsilon_{\mathbf{k},\sigma}^* \hat{a}_{\mathbf{k},\sigma} + \varepsilon_{\mathbf{k},\sigma} \hat{a}_{\mathbf{k},\sigma}^{\dagger} \right) \cdot \hat{\mathbf{p}}.$$
 (3)

Hierbei ist \hat{H}_{atom} der Hamilton-Operator des Wasserstoffatoms mit den Eigenzuständen $|n,l,m\rangle$ und den bekannten Quantenzahlen n,l,m. Außerdem gilt $g_k=\sqrt{\frac{2\pi\alpha}{Vk}}$ und V ist das (beliebig große) Volumen des Systems. Summiert wird stets über alle Wellenvektoren \mathbf{k} und die beiden Polarisationen σ der elektromagnetischen Feldmoden und $\varepsilon_{\mathbf{k},\sigma}$ ist der entsprechende Polarisationsvektor mit $|\varepsilon_{\mathbf{k},\sigma}|^2=1$.

- (a) Berechnen Sie zunächst die Matrixelemente $\langle n=2, l=l_1, m=m_1|\hat{\mathbf{p}}|n=1, l=0, m=0\rangle$ mit $l_1=1$ und $m_1\in\{-1,0,1\}$, sowie mit $l_1=0$ und $m_1=0$. Stellen Sie dazu \mathbf{r}/r durch Kugelflächenfunktionen $Y_{l,m}(\theta,\phi)$ dar und benutzen Sie für die Integration über den Raumwinkel die Orthonormalität der Kugelflächenfunktionen.
- (b) Benutzen Sie nun Fermis Goldene Regel,

$$R_{i \to f} = \frac{2\pi}{\hbar} \left| \langle f | \hat{H}_{\text{int}} | i \rangle \right|^2 \delta(E_f - E_i), \tag{4}$$

um die Rate $R_{m \to (\mathbf{k},\sigma)}$ des Zerfalls der Zustände $|i\rangle = |n=2,l=1,m\rangle \otimes |\mathrm{vac}\rangle$ in einen Zustand $|f\rangle = |n=1,l=0,m=0\rangle \otimes \hat{a}_{\mathbf{k},\sigma}^{\dagger} |\mathrm{vac}\rangle$ zu berechnen. Dabei ist $|\mathrm{vac}\rangle$ der Vakuumzustand des quantisierten elektromagnetischen Feldes. Sind $|i\rangle$ und $|f\rangle$ Eigenzustände von \hat{H}_0 ? Wenn ja, wie lauten die Eigenenergien? Zeigen Sie, dass für ein unpolarisiertes Wasserstoffatom die Rate durch

$$R_{\mathbf{k},\sigma} = g_k^2 \alpha \pi \frac{2^{10}}{3^9} \delta \left(-\frac{3}{8} \alpha + k \right) \tag{5}$$

gegeben ist.

9. Übung TPV WS12/13

(c) Zeigen Sie, dass für die Rate der Emission eines Photons mit einem beliebigen Impuls und einer beliebigen Polarisation

$$R = \left(\frac{2}{3}\right)^8 \alpha^3 \tag{6}$$

gilt.

(d) Wie lautet die Rate aus Gleichung (6) in SI-Einheiten? Geben Sie R in Sekunde⁻¹ für ein Wasserstoffatom an und vergleichen Sie Ihr Ergebnis mit dem experimentellen Wert (Quelle angeben!).

Aufgabe 20 (2 Punkte): Streuung am Delta-Potential

Berechnen Sie mit Hilfe der Lippmann–Schwinger-Gleichung in einer Raumdimension die Streuung einer ebenen Welle an dem singulären Potential $V(x)=g\,\delta(x)$.

Aufgabe 21 (3 Punkte): Born'sche Näherung

Berechnen sie im Rahmen der Born'schen Näherung die Streuamplitude f(q), mit $q=2k\sin(\theta/2)$, für die Streuung eines Teilchens am Potential $V(r)=\frac{2V_0}{a\sqrt{\pi}}\exp[-(r/a)^2]$. Zeichnen Sie den differentiellen Streuquerschnitt $\mathrm{d}\sigma/\mathrm{d}\Omega$ als Funktion des Polarwinkels θ für verschiedene Werte von ka (z.B. ka=1,10). Diskutieren Sie Ihre Ergebnisse.

Vorlesung: Di. um 8:30 Uhr – 10:00 Uhr in EW 203, Do. um 8:30 Uhr – 10:00 Uhr in EW 203.

Scheinkriterien:

- ullet Mindestens 50% der schriftlichen Übungspunkte.
- Regelmäßige und aktive Teilnahme in den Tutorien (u.a. mindestens einmal vorrechnen).

Sprechzeiten:

Name	Tag	Zeit	Raum	Tel.
Prof. Dr. Harald Engel	Mi	14:30 – 16:00 Uhr	EW 738	79462
Mathias Hayn	Мо	15:00 – 17:00 Uhr	EW 711	27884
Wassilij Kopylov		nach Vereinbarung	EW 705	26143
Jan Totz		nach Vereinbarung	EW 627	27681