Prof. Dr. Harald Engel

Judith Lehnert, Benjamin Lingnau, Maria Zeitz, Julian Böll, Alexander Ziepke

3. Übungsblatt – Theoretische Physik II: Quantenmechanik

Abgabe: Fr. 08.05.2015 bis 14:00 Uhr, Briefkasten ER-Gebäude

Aufgabe 7 (7.5+3.5=11 Punkte): Kastenpotential mit endlich hohen Wänden

Gegeben sei ein Potential U(x) durch

$$U(x) = \left\{ \begin{array}{ccc} -U_0 & , & -L < x < L \\ 0 & , & \text{sonst.} \end{array} \right.$$

Da hier nur gebundene Zustände betrachtet werden, ist $-U_0 < E < 0$. Bitte verwenden Sie die folgenden Abkürzungen:

$$\kappa^2 = -\frac{2mE}{\hbar^2} \quad \text{und} \quad k^2 = \frac{2m(E+U_0)}{\hbar^2} \,.$$

(a) Lösen Sie für diesen Fall die stationäre Schrödinger-Gleichung durch geeignete Ansätze für die drei Bereiche des Potentials. Benutzen Sie die Rand- und Stetigkeitsbedingungen und die sich aus der Normierung ergebene Bedingung zur Bestimmung der auftretenden Konstanten. Behandeln Sie dabei symmetrische und antisymmetrische Lösungen getrennt. Zeigen Sie, dass zur Bestimmung der Energie die transzendenten Gleichungen

$$\kappa = k \tan(kL)$$
 (symmetrische Lösung) $\kappa = -k \cot(kL)$ (antisymmetrische Lösung)

zu erfüllen sind und geben Sie die (normierten) Wellenfunktionen an.

(b) Die in 7(a) auftretenden Gleichungen lassen sich analytisch nicht lösen. Grafisch kann man jedoch Aussagen über Anzahl und Größe der Energieeigenwerte in Abhängigkeit von der Tiefe U_0 und der Breite des Kastens machen. Bestimmen Sie die (diskreten) Energieeigenwerte E_n für den Fall $mU_0L^2 \longrightarrow \infty$. Zeigen Sie zunächst, dass gilt:

$$k = \frac{(2n+1)\pi}{2L} \qquad \text{(symmetrische Lösung)}$$

$$k = \frac{n\pi}{L} \qquad \text{(antisymmetrische Lösung)}$$

wobei $n = 1, 2, \ldots$

Hinweis: Sie erhalten eine zusätzliche Gleichung zur Bestimmung von k und κ , indem Sie $(kL)^2 + (\kappa L)^2$ betrachten.

3. Übung TPII SoSe 15

Aufgabe 8 (1+1+2+3+2=9 Punkte): Tunneleffekt

Wir betrachten eine einfache eindimensionale Potentialschwelle: U(x)

$$U(x) = \begin{cases} U_0; & 0 < x < a \\ 0; & \text{sonst} \end{cases}$$

Von links laufe eine Welle ein, die teilweise reflektiert, teilweise transmittiert werde (Skizze).

- (a) Begründen Sie den Ansatz $\Psi_{\rm I}(x,t)=e^{ikx}+re^{-ikx}$, $\Psi_{\rm III}(x,t)=te^{ikx}$ für die Wellenfunktion links bzw. rechts von der Schwelle. Finden Sie den Zusammenhang zwischen der Energie E der Welle und der Konstanten k.
- (b) Finden Sie einen Ansatz für die Wellenfunktion $\Psi_{\rm II}$ innerhalb der Schwelle und zeigen Sie den Zusammenhang einer der auftretenden Konstanten mit der Energie E der Welle. Beachten Sie dabei die Fallunterscheidung für Energien ober- und unterhalb von U_0 .
- (c) Stellen Sie aus den Stetigkeitsbedingungen für die Wellenfunktion ein lineares Gleichungssystem in den unbekannten Amplituden auf.
- (d) Leiten Sie jeweils für das Transmissonsvermögen $T=\frac{|j_t|}{|j_e|}$ und das Reflektionsvermögen $R=\frac{|j_r|}{|j_e|}$ einen Ausdruck her, der nur noch von den Parametern (nicht zwingend allen) $\hat{E}=E/U_0,\,\hat{a}=a\sqrt{2mU_0/\hbar^2},\,\hat{L}=L\sqrt{2mU_0/\hbar^2}$ und $\hat{m}=2mU_0/\hbar^2$ abhängt. Bemerkung: $j_e,\,j_r$ und j_t sind die Wahrscheinlichkeitsstromdichten der einfallenden, reflektierten und transmittierten Welle.
- (e) Verwenden Sie ein geeignetes Programm und plotten Sie das Transmissionsvermögen in Abhängigkeit von $\hat{E} \in [0,5]$. Nehmen Sie die Fälle $\hat{a}=0.5,\,1,\,5.0$ und 10.0 an.

Wochenplan						
	Мо	Di	Mi	Do	Fr	
08-10		EW 202 HE	EW 202 HE			
10-12				EW 229 JB	EW 229 MZ	
12-14	EW 114 AZ			EW 229 AZ		
	EW 229 JB					
14-16						
16-18			EW 114 JL			
			EW 229 BL			

Sprechstunden						
HE	Prof. Dr. Harald Engel	Mi 14:30-16	EW 738			
AZ	Alexander Ziepke	Mi 14-15	EW 060			
BL	Benjamin Lingnau	Di 14-15	EW 629			
JB	Julian Böll	Mi 15-16	EW 060			
JL	Judith Lehnert	Mo 15-16	ER 246			
MZ	Maria Zeitz	Do 14-15	EW 702			

2