Prof. Dr. Eckehard Schöll, PhD

Alice von der Heydt, Benjamin Lingnau, Lasse Ermoneit, Anne-Kathleen Malchow

1. Übungsblatt - Theoretische Physik III: Elektrodynamik

Abgabe: Mo. 31.10.2015 bis 14:00 Uhr, Briefkasten ER-Gebäude

Aufgabe 1 (8 Punkte): Differenzielle Form des Gauß'schen Gesetzes

Das Gauß'sche Gesetz der Elektrostatik $\underline{\nabla}\cdot\underline{E}=\rho/\epsilon_0$ legt die Ladungen als die Quellen des elektrischen Feldes fest. Führt man ein elektrisches Potential ϕ ein, so gilt $\underline{E}=-\underline{\nabla}\phi$. Das Potential einer Ladungsverteilung sei gegeben als

$$\phi(x, y, z) = c \frac{z^2 e^{-(x^2 + y^2 + z^2)/d}}{x^2 + y^2 + z^2},$$

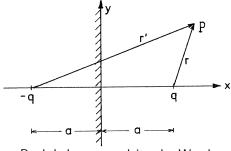
wobei c und d Konstanten seien.

- 1. Welche physikalischen Einheiten haben die Konstanten c und d?
- 2. Schreiben Sie das Potential in Kugelkoordinaten.
- 3. Berechnen Sie das elektrische Feld E in Kugelkoordinaten. Benutzen Sie

$$\underline{\nabla} f = \left(\frac{\partial}{\partial r} f\right) \underline{e}_r + \frac{1}{r} \left(\frac{\partial}{\partial \theta} f\right) \underline{e}_\theta + \frac{1}{r \sin \theta} \left(\frac{\partial}{\partial \varphi} f\right) \underline{e}_\varphi.$$

4. Berechnen Sie die Ladungsverteilung $\rho(\underline{r})$, die ein solches Feld erzeugt. Benutzen Sie

$$\underline{\nabla} \cdot \underline{u} = \frac{1}{r^2} \frac{\partial (r^2 u_r)}{\partial r} + \frac{1}{r \sin \theta} \frac{\partial (u_\theta \sin \theta)}{\partial \theta} + \frac{1}{r \sin \theta} \frac{\partial u_\varphi}{\partial \varphi}.$$


Aufgabe 2 (5 Punkte): Integrale Form des Gauß'schen Gesetzes

Betrachten Sie als Spezialfall einer kontinuierlichen Ladungsverteilung eine homogen geladene Kugel.

- (a) Leiten Sie ausgehend von der differenziellen Form des Gauß'schen Gesetzes eine Integralform dieses Zusammenhangs zwischen dem elektrischen Feld \underline{E} und der Ladungsdiche ρ her.
- (b) Eine Kugel vom Radius R habe die konstante Ladungsdichte ρ_0 . Berechnen Sie das elektrische Feld \underline{E} für diese homogen geladene Vollkugel. Hinweis: Lösen Sie die beiden Integrale aus (a) unter Berücksichtigung der gegebenen Symmetrie. Betrachten Sie die Fälle r>R und r< R.
- (c) Stellen Sie das Ergebnis für das elektrische Feld $|\underline{E}(\underline{r})|$ grafisch dar.

Aufgabe 3 (7 Punkte): Punktladung vor einer leitenden Ebene

Eine Punktladung q befinde sich im Abstand a vor einer unendlich ausgedehnten leitenden Wand. Welche Ladungsdichte wird in der Wand induziert? Wie groß ist die gesamte Ladung der Ebene? Behandeln Sie das Problem durch Einführung einer Bildladung.

Punktladung q vor leitender Wand

1. Übung TPIII WS 16/17

Scheinkriterien:

- Mindestens 50% der Übungspunkte (Abgabe in 3er Gruppen). Ab dem zweiten Übungsblatt werden Einzel- und Zweierabgaben nicht mehr akzeptiert!
- Regelmäßige aktive Teilnahme in den Tutorien.
- Vorstellen einer Übungsaufgabe im Tutorium.
- Bestandene Klausur. Diese findet am 10.02.2017 um 08:00 s.t. im H3010 statt.

	Мо	Di	Mi	Do	Fr
08-10					EW 203 ES
10-12				EW 226 LE	EW 114 LE EW 226 BL
12-14		EW 114 AH EW 731 AM	EW 203 ES		
14-16				EW 226 AM	

Sprechstunden					
ES	Prof. Dr. Eckehard Schöll, PhD	nach Vereinbarung	EW 735		
AM	Anne-Kathleen Malchow	Mo 14-15	EW 060		
BL	Benjamin Lingnau	Di 15-16	EW 629		
AH	Alice von der Heydt	Mi 15:30-16:30	EW 266		
LE	Lasse Ermoneit	Do 13:30-14:30	EW 060		