Prof. Dr. Eckehard Schöll, PhD

Dr. Alice von der Heydt, Dr. Benjamin Lingnau, Lasse Ermoneit, Anne-Kathleen Malchow

10. Übungsblatt – Theoretische Physik III: Elektrodynamik

Abgabe: Di. 17.01.2017 bis 12:00 Uhr, Briefkasten ER-Gebäude

Aufgabe 28 (7 Punkte): Kugelkondensator mit dielektrischer Segmentfüllung

Zwei konzentrische, leitende, dünne Kugelflächen mit Radien R_1 und $R_2 > R_1$ seien flächenhomogen geladen mit Gesamtladung +Q bzw. -Q. Im Raumwinkelbereich $0 \le \vartheta \le \vartheta_0$ des Zwischenraums zwischen beiden Kugeln befinde sich ein Dielektrikum (homogen, isotrop) der relativen Dielektrizitätskonstante $\varepsilon_r > 1$, im Winkelbereich $\vartheta_0 < \vartheta \le \pi$ Vakuum ($\varepsilon_r = 1$).

- (a) Skizzieren Sie den Aufbau und berechnen Sie die Kapazität dieses Kondensators. Vergleichen Sie mit der Kapazität eines vollständig vakuumgefüllten Kondensators gleicher Geometrie und gleicher Ladungen.
- (b) Geben Sie die Verteilung der Oberflächenladung auf der äußeren Kugelfläche an.

Aufgabe 29 (13 Punkte): Materialgleichungen mit linearer Antwortfunktion, Suszeptibilität

(a) Für die Fourierkomponenten des elektrischen Feldes $\underline{E}(r,t)$ und der Polarisation $\underline{P}(r,t)$,

$$\underline{\underline{E}}(\underline{r},t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} d\omega \, \underline{\hat{\underline{E}}}(\underline{r},\omega) e^{-i\omega t} \qquad \underline{\underline{P}}(\underline{r},t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} d\omega \, \underline{\hat{\underline{P}}}(\underline{r},\omega) e^{-i\omega t}$$

gelte mit frequenzabhängiger Suszeptibilität $\hat{\chi}(\omega)$ die lineare Relation

$$\hat{P}(r,\omega) = \hat{\chi}(\omega)\hat{E}(r,\omega).$$

Leiten Sie daraus die Materialgleichung mit "Gedächtnis"

$$\underline{P}(\underline{r},t) = \int_{0}^{\infty} d\tau \, \chi(\tau) \underline{E}(\underline{r},t-\tau)$$

her, wobei

$$\chi(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \mathrm{d}\omega \, \hat{\chi}(\omega) \mathrm{e}^{-i\omega t}.$$

(b) Berechnen Sie $\chi(\tau)$ für ein einfaches Materiemodell, in dem die Elektronen der folgenden gedämpften Oszillatorgleichung gehorchen:

$$m\left(\ddot{\underline{x}} + \gamma \dot{\underline{x}} + \omega_0^2 \underline{x}\right) = e \underline{E}(\underline{r}, t)$$

Bestimmen Sie dazu zuerst das induzierte Dipolmoment eines Elektrons, $\underline{p}=e\,\underline{x}(\underline{r},t)$, für eine harmonische (monochromatische) Welle $\underline{E}(\underline{r},t)=\underline{\hat{E}}(\underline{r},\omega)\exp(-i\omega t)$ und daraus die Polarisation $\underline{P}(\underline{r},t)=\underline{\hat{P}}(\underline{r},\omega)\exp(-i\omega t)=n\,\underline{p}$ (mit n: Elektronenkonzentration) sowie $\hat{\chi}(\omega)$. Durch Fouriertransformation erhalten Sie $\chi(\tau)$.

10. Übung TPIII WS 16/17

Scheinkriterien:

- Mindestens 50% der Übungspunkte (Abgabe in 3er Gruppen).
- Regelmäßige, aktive Teilnahme an den Tutorien.
- Vorstellen einer Übungsaufgabe im Tutorium.
- Bestandene Klausur. Diese findet am 10.02.2017 um 08:00 s.t. im H3010 statt.

	Мо	Di	Mi	Do	Fr
08-10					EW 203 ES
10-12				EW 226 LE	EW 114 LE EW 226 BL
12-14		EW 114 AH EW 731 AM	EW 203 ES		
14-16				EW 226 AM	

	Sprechstunden					
ES	Prof. Dr. Eckehard Schöll, PhD	nach Vereinbarung	EW 735			
AM	Anne-Kathleen Malchow	Mo 14-15	EW 060			
BL	Benjamin Lingnau	Di 15-16	EW 629			
AH	Alice von der Heydt	Mi 15:30-16:30	EW 266			
LE	Lasse Ermoneit	Do 13:30-14:30	EW 060			