Prof. Dr. Eckehard Schöll, PhD

Dr. Alice von der Heydt, Dr. Benjamin Lingnau, Lasse Ermoneit, Anne-Kathleen Malchow

12. Übungsblatt – Theoretische Physik III: Elektrodynamik

Abgabe: Di. 31.01.2017 bis 12:00 Uhr, Briefkasten ER-Gebäude

Aufgabe 32 (6 Punkte): Addition von Geschwindigkeiten unter LORENTZ-Transformationen

Gegeben seien drei Bezugssysteme Σ_1 , Σ_2 und Σ_3 , die sich paarweise relativ zueinander mit konstanten Geschwindigkeiten v_{ji} , wobei $i,j\in\{1,2,3\}$, in x-Richtung bewegen: Σ_2 bewege sich relativ zu Σ_1 mit der Geschwindigkeit v_{21} , und Σ_3 relativ zu Σ_2 mit der Geschwindigkeit v_{32} . Zeigen Sie, dass die Geschwindigkeit v_{31} , mit der sich Σ_3 relativ zu Σ_1 bewegt, gegeben ist durch

$$v_{31} = \frac{v_{21} + v_{32}}{1 + \frac{v_{21}v_{32}}{c^2}}.$$

Hinweis: Die Darstellungen der zugehörigen speziellen LORENTZ-Transformationen als Matrizen bilden eine Gruppe. Nutzen Sie die Eigenschaft, um die gesuchte Geschwindigkeit zu bestimmen.

Aufgabe 33 (7 Punkte): Kontra- und kovariante Vektoren, MINKOWSKI-Norm

Die MINKOWSKI-Norm und das zugehörige Skalarprodukt sind definiert durch das raum-zeitliche Abstandsquadrat $(\mathrm{d}s)^2 = (c\,\mathrm{d}t)^2 - \left(\mathrm{d}x^1\right)^2 - \left(\mathrm{d}x^2\right)^2 - \left(\mathrm{d}x^3\right)^2$.

- (a) Schreiben Sie die MINKOWSKI-Norm und das zugehörige Skalarprodukt
 - (i) mit Hilfe des metrischen Tensors,
 - (ii) unter Verwendung von kontra- und kovarianten Vektorkomponenten (EINSTEIN'sche Summenkonvention).
- (b) Unter einer LORENTZ-Transformation U transformiert ein kontravarianter Vektor gemäß $x'^{\mu}=U^{\mu}_{\ \nu}x^{\nu}$. Wie transformiert ein kovarianter Vektor $x'_{\mu}=U'^{\ \nu}_{\mu}x_{\nu}$, bzw. welches ist der Zusammenhang zwischen U' und U?
- (c) Schließen Sie aus der Invarianz des MINKOWSKI-Skalarprodukts gegenüber LORENTZ-Transformationen auf die Einträge $U^{\lambda}{}_{\mu}U'^{\nu}_{\lambda}$.

Aufgabe 34 (7 Punkte): Vierer-Beschleunigung

Verwenden Sie die in der Vorlesung eingeführten Ausdrücke für Vierer-Geschwindigkeit u^{μ} und Eigenzeit τ , um die Vierer-Beschleunigung $b^{\mu} = du^{\mu}/d\tau$ zu bestimmen.

- (a) Zeigen Sie, dass im MINKOWSKI-Raum die Beschleunigung stets orthogonal zur Geschwindigkeit ist.
- (b) Drücken Sie die Komponenten von b^{μ} explizit durch die Komponenten der Systemgeschwindigkeit $\underline{v} = (v_x, v_y, v_z)^T$ aus.

12. Übung TPIII WS 16/17

Scheinkriterien:

- Mindestens 50% der Übungspunkte (Abgabe in 3er Gruppen).
- Regelmäßige, aktive Teilnahme an den Tutorien.
- Vorstellen einer Übungsaufgabe im Tutorium.
- Bestandene Klausur. Diese findet am 10.02.2017 um 08:00 s.t. im H3010 statt.

	Мо	Di	Mi	Do	Fr
08-10					EW 203 ES
10-12				EW 226 LE	EW 114 LE EW 226 BL
12-14		EW 114 AH EW 731 AM	EW 203 ES		
14-16				EW 226 AM	

	Sprechstunden					
ES	Prof. Dr. Eckehard Schöll, PhD	nach Vereinbarung	EW 735			
AM	Anne-Kathleen Malchow	Mo 14-15	EW 060			
BL	Benjamin Lingnau	Di 15-16	EW 629			
AH	Alice von der Heydt	Mi 15:30-16:30	EW 266			
LE	Lasse Ermoneit	Do 13:30-14:30	EW 060			