Prof. Dr. Eckehard Schöll, PhD

Alice von der Heydt, Benjamin Lingnau, Lasse Ermoneit, Anne-Kathleen Malchow

2. Übungsblatt - Theoretische Physik III: Elektrodynamik

Abgabe: Mo. 07.11.2016 bis 14:00 Uhr, Briefkasten ER-Gebäude

Aufgabe 4 (4 Punkte): Green'sche Identitäten

Seien $\Theta(\underline{r})$ und $\Psi(\underline{r})$ zwei skalare, zweimal stetig differenzierbare Felder. Beweisen Sie mit Hilfe des Gauß'schen Integralsatzes

(a) die 1. Green'sche Identität

$$\int\limits_{V}\mathrm{d}V\left(\Theta\,\Delta\Psi+\underline{\nabla}\Theta\cdot\underline{\nabla}\Psi\right)=\int\limits_{\partial V}\mathrm{d}\underline{f}\cdot\left(\Theta\,\underline{\nabla}\Psi\right)\quad\text{und}$$

(b) die 2. Green'sche Identität

$$\int\limits_{V} \mathrm{d}V \left(\Theta \Delta \Psi - \Psi \Delta \Theta \right) = \int\limits_{\partial V} \mathrm{d}\underline{f} \cdot \left(\Theta \,\underline{\nabla} \Psi - \Psi \,\underline{\nabla} \Theta \right),$$

wobei $\mathrm{d}f$ das orientierte Flächenelement senkrecht zur Oberfläche ∂V bezeichnet.

Aufgabe 5 (8 Punkte): Multipole

Betrachten Sie die Multipol-Entwicklungen der folgenden Ladungsverteilungen:

- (a) An zwei Eckpunkten eines gleichseitigen Dreiecks (Seitenlänge d) befinden sich Punktladungen der Größe q. Am dritten Eckpunkt befindet sich eine Punktladung der Größe -q. Bestimmen Sie Monopol- und Dipolmoment dieser Ladungsanordnung.
- (b) Auf der Oberfläche eines Rotationsellipsoids mit den Halbachsen a und b sei die Ladung q homogen verteilt. Bestimmen Sie den Quadrupoltensor Q_{kl} , zeigen Sie, dass dieser nur einen unabhängigen Eintrag $Q := Q_{33}$ besitzt, und berechnen Sie Q.

Hinweis: Ein Punkt \underline{r}' auf der Oberfläche eines im Ursprung zentrierten Rotationsellipsoiden erfüllt

$$\left(\frac{x'}{a}\right)^2 + \left(\frac{y'}{a}\right)^2 + \left(\frac{z'}{b}\right)^2 = 1.$$

Aufgabe 6 (8 Punkte): Kugelkondensator

Zwei konzentrische Kugeloberflächen mit den Radien R_1 und R_2 , wobei $R_1 < R_2$, seien jeweils homogen geladen mit Gesamtladung q bzw. -q.

- (a) Geben Sie die Ladungsdichte in Abhängigkeit von $r := |\underline{r}|$ an.
- (b) Bestimmen Sie das elektrische Feld \underline{E} und dessen skalares Potential Φ in den Bereichen $r \leq R_1, R_1 < r \leq R_2$ und $R_2 < r$. Es soll $\Phi(r \to \infty) = 0$ gelten.
- (c) Skizzieren Sie den Verlauf des Potentials Φ als Funktion von r.
- (d) Berechnen Sie die Energiedichte w des elektrostatischen Feldes.
- (e) Berechnen Sie die Kapazität dieses Kugelkondensators.

2. Übung TPIII WS 16/17

Scheinkriterien:

- Mindestens 50% der Übungspunkte (Abgabe in 3er Gruppen). Ab dem zweiten Übungsblatt werden Einzel- und Zweierabgaben nicht mehr akzeptiert!
- Regelmäßige, aktive Teilnahme an den Tutorien.
- Vorstellen einer Übungsaufgabe im Tutorium.
- Bestandene Klausur. Diese findet am 10.02.2017 um 08:00 s.t. im H3010 statt.

	Мо	Di	Mi	Do	Fr
08-10					EW 203 ES
10-12				EW 226 LE	EW 114 LE EW 226 BL
12-14		EW 114 AH EW 731 AM	EW 203 ES		
14-16				EW 226 AM	

Sprechstunden					
ES	Prof. Dr. Eckehard Schöll, PhD	nach Vereinbarung	EW 735		
AM	Anne-Kathleen Malchow	Mo 14-15	EW 060		
BL	Benjamin Lingnau	Di 15-16	EW 629		
AH	Alice von der Heydt	Mi 15:30-16:30	EW 266		
LE	Lasse Ermoneit	Do 13:30-14:30	EW 060		