Prof. Dr. Eckehard Schöll, PhD

Dr. Alice von der Heydt, Dr. Benjamin Lingnau, Lasse Ermoneit, Anne-Kathleen Malchow

4. Übungsblatt – Theoretische Physik III: Elektrodynamik

Abgabe: Di. 22.11.2016 bis 12:00 Uhr, Briefkasten ER-Gebäude

Aufgabe 10 (6 Punkte): Kapazitätskoeffizienten eines Kugelkondensators

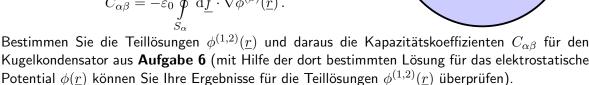
Ist in einem raumladungsfreien Gebiet ($\Delta\phi(r)=0$) ein System von Leiter- bzw. Äquipotentialflächen S_{α} mit $\phi(\underline{r})|_{S_{\alpha}} = \phi_{\alpha}$ bekannt, so lässt sich das zugehörige Kondensatorproblem lösen. Jede der Kondensatorflächen S_{α} ($\alpha=1,2$) ist eine Äquipotentialfläche: $\phi(\underline{r})|_{S_{\alpha}}=\phi_{\alpha}$. Zur Lösung des Problems schreiben wir das elektrostatische Potential als Superposition zweier

Teillösungen $\phi^{(1,2)}(r)$ der Poissongleichung im ladungsfreien Raum, $\Delta\phi^{(1,2)}(\underline{r})=0$:

$$\phi(\underline{r}) = \phi_1 \phi^{(1)}(\underline{r}) + \phi_2 \phi^{(2)}(\underline{r}).$$

Wir wählen die Integrationskonstanten so, dass beide Teillösungen $\phi^{(1,2)}(\underline{r})$ auf 1 normiert sind und auf der jeweils anderen Äquipotentialfläche verschwinden:

$$\phi^{(1)}(\underline{r})\Big|_{S_1} = 1, \qquad \phi^{(1)}(\underline{r})\Big|_{S_2} = 0;$$


$$\phi^{(2)}(\underline{r})\Big|_{S_1} = 0, \qquad \phi^{(2)}(\underline{r})\Big|_{S_2} = 1.$$

Zwischen den Potentialen ϕ_{lpha} und den Ladungen Q_{lpha} auf den Kondensatorflächen besteht dann der lineare Zusammenhang

$$Q_{\alpha} = \sum_{\beta=1}^{2} C_{\alpha\beta} \phi_{\beta},$$

mit den Kapazitätskoeffizienten

$$C_{\alpha\beta} = -\varepsilon_0 \oint_{S} d\underline{f} \cdot \nabla \phi^{(\beta)}(\underline{r}).$$

Aufgabe 11 (9 Punkte): BIOT-SAVART-Gesetz, Helmholtz-Spulen

- (a) Berechnen Sie mit Hilfe des BIOT-SAVART-Gesetzes die magnetische Induktion eines dünnen, kreisförmigen Drahtrings (Radius R), der von einem stationären Strom I durchflossen wird. Gehen Sie dazu vor wie folgt:
 - ullet Wählen Sie Zylinderkoordinaten: $ho,\ arphi$ seien die Polarkoordinaten in der Ebene des Rings, z die axiale Koordinate.
 - Leiten Sie einen Integralausdruck für Polar- und Axialkomponenten der magnetischen Induktion B her. Berechnen Sie das Integral auf der z-Achse exakt.
- (b) Betrachten Sie nun zwei solcher Drahtringe (jeweils Radius R, von Strom I durchflossen), die parallel zueinander mit axialem Abstand d angeordnet sind. Wie groß muss der Abstand d gewählt werden, um auf der Symmetrieachse der Anordnung zwischen den Ringen ein möglichst homogenes Magnetfeld zu erzeugen? Stellen Sie für diesen optimalen Abstand |B(z)| graphisch dar.

Hinweis: Legen Sie den Ursprung der z-Achse in den Mittelpunkt der Anordnung, und entwickeln Sie $|\underline{B}(z)|$ in eine Taylorreihe um z=0 bis zur vierten Ordnung in z.

1

Bitte Rückseite beachten!

 R_2

4. Übung TPIII WS 16/17

Aufgabe 12 (5 Punkte): Kraft zwischen zwei stromdurchflossenen Drähten

Gegeben seien zwei lange, parallele Drähte im Abstand d voneinander, die von Strömen der Beträge I_1 bzw. I_2 durchflossen werden. Berechnen Sie die Kraft, welche die Drähte aufeinander ausüben. Geben Sie an, ob diese Kraft anziehend oder abstoßend ist (in Abhängigigkeit davon, ob I_1 und I_2 parallel oder antiparallel gerichtet sind).

Scheinkriterien:

- Mindestens 50% der Übungspunkte (Abgabe in 3er Gruppen).
- Regelmäßige, aktive Teilnahme an den Tutorien.
- Vorstellen einer Übungsaufgabe im Tutorium.
- Bestandene Klausur. Diese findet am 10.02.2017 um 08:00 s.t. im H3010 statt.

	Мо	Di	Mi	Do	Fr
08-10					EW 203 ES
10-12				EW 226 LE	EW 114 LE EW 226 BL
12-14		EW 114 AH EW 731 AM	EW 203 ES		
14-16				EW 226 AM	

Sprechstunden						
ES	Prof. Dr. Eckehard Schöll, PhD	nach Vereinbarung	EW 735			
AM	Anne-Kathleen Malchow	Mo 14-15	EW 060			
BL	Benjamin Lingnau	Di 15-16	EW 629			
AH	Alice von der Heydt	Mi 15:30-16:30	EW 266			
LE	Lasse Ermoneit	Do 13:30-14:30	EW 060			