Prof. Dr. Eckehard Schöll, PhD

Dr. Alice von der Heydt, Dr. Benjamin Lingnau, Lasse Ermoneit, Anne-Kathleen Malchow

5. Übungsblatt - Theoretische Physik III: Elektrodynamik

Abgabe: Di. 29.11.2016 bis 12:00 Uhr, Briefkasten ER-Gebäude

Aufgabe 13 (5 Punkte): Eichtransformation

Die Potenziale ϕ und \underline{A} sind in der Elektrodynamik nicht eindeutig gegeben. Sie liegen nur bis auf eine Eichtransformation fest. Betrachten Sie den Fall eines homogenen Magnetfeldes in z-Richtung: $\underline{B} = B_0\underline{e}_z$.

(a) Zeigen Sie, dass die Vektorpotenziale

$$\underline{A} = \frac{1}{2}\underline{B} \times \underline{r}, \qquad \underline{A}'_1 = -B_0 y \underline{e}_x, \qquad \underline{A}'_2 = B_0 x \underline{e}_y$$

die gleiche magnetische Induktion \underline{B} liefern.

(b) Bestimmen Sie die Eichfunktionen F_1 und F_2 , die die Vektorpotenziale \underline{A}'_1 bzw. \underline{A}'_2 in das Potenzial A überführen.

Aufgabe 14 (9 Punkte): Magnetischer Dipol

Die Stromdichte in einem Kreisleiter mit Radius R (Umfang $L\equiv 2\pi R$) sei in Kugelkoordinaten gegeben als

$$j(\underline{r}) = j_{\varphi}(\underline{r})\underline{e}_{\varphi}(\underline{r}) = J \,\delta(\cos\theta) \,\delta(r-R)\,\underline{e}_{\varphi}$$
.

(a) Bestimmen Sie die Größe J aus der Stromstärke $I=\frac{1}{L}\int j_{\varphi}(\underline{r})\,d^3\underline{r}$. Verwenden und beweisen Sie dazu

$$\delta(f(x)) = \sum_{x_0} |f'(x_0)|^{-1} \, \delta(x - x_0) \quad \text{mit} \quad f \in C^1, f(x_0) = 0, f'(x_0) \neq 0.$$

(b) Berechnen Sie das Vektorpotential $\underline{A}(\underline{r})$, das Magnetfeld $\underline{B} = \nabla \times \underline{A}$ und das magnetische Dipolmoment \underline{m} aus den Gleichungen

$$\underline{A}(\underline{r}) = \frac{\mu_0}{4\pi} \, \frac{\underline{m} \times \underline{r}}{r^3} \qquad \text{mit} \qquad \underline{m} \equiv \frac{1}{2} \int_V d^3r' \, \underline{r}' \times \underline{j}(\underline{r}')$$

indem Sie die vorgegebene Stromdichte $j(\underline{r})$ einsetzen.

Aufgabe 15 (6 Punkte): Verschiebungsstrom

Betrachten Sie einen Plattenkondensator aus zwei parallelen kreisförmigen Platten mit dem Radius R im Abstand d zueinander, der von einem zeitlich konstanten Strom I aufgeladen wird. Verwenden Sie die Näherung eines homogenen elektrischen Feldes zwischen den Platten und vernachlässigen Sie Randeffekte.

- (a) Berechnen Sie die Verschiebungsstromdichte und die Energiedichte w des elektromagnetischen Feldes. Stellen Sie $\underline{B}(\underline{r})$ innerhalb einer Fläche parallel zu den Platten im Zwischenraum grafisch dar.
- (b) Berechnen Sie die zeitliche Anderung der Energiedichte w sowie die Energiestromdichte \underline{S} beim Aufladen. Interpretieren Sie das Ergebnis.

5. Übung TPIII WS 16/17

Scheinkriterien:

- Mindestens 50% der Übungspunkte (Abgabe in 3er Gruppen).
- Regelmäßige, aktive Teilnahme an den Tutorien.
- Vorstellen einer Übungsaufgabe im Tutorium.
- Bestandene Klausur. Diese findet am 10.02.2017 um 08:00 s.t. im H3010 statt.

	Мо	Di	Mi	Do	Fr
08-10					EW 203 ES
10-12				EW 226 LE	EW 114 LE EW 226 BL
12-14		EW 114 AH EW 731 AM	EW 203 ES		
14-16				EW 226 AM	

	Sprechstunden					
ES	Prof. Dr. Eckehard Schöll, PhD	nach Vereinbarung	EW 735			
AM	Anne-Kathleen Malchow	Mo 14-15	EW 060			
BL	Benjamin Lingnau	Di 15-16	EW 629			
AH	Alice von der Heydt	Mi 15:30-16:30	EW 266			
LE	Lasse Ermoneit	Do 13:30-14:30	EW 060			