Prof. Dr. Eckehard Schöll, PhD

Dr. Alice von der Heydt, Dr. Benjamin Lingnau, Lasse Ermoneit, Anne-Kathleen Malchow

6. Übungsblatt - Theoretische Physik III: Elektrodynamik

Abgabe: Di. 6.12.2016 bis 12:00 Uhr, Briefkasten ER-Gebäude

Aufgabe 16 (10 Punkte): Energiestromdichte rotierender geladener Hohlzylinder

Ein in z-Richtung unendlich langer Hohlzylinder mit Radius R trage die homogene Flächenladungsdichte σ_0 . Nun beginne der Zylinder langsam um seine Symmetrieachse zu rotieren, mit folgendem Zeitprotokoll der Winkelgeschwindigkeit ω :

$$\omega(t) = \left\{ \begin{array}{ll} 0, & t \leq 0, \\ \frac{\omega_0}{T}t, & 0 < t \leq T, \\ \omega_0, & t > T, \end{array} \right. \quad \text{mit } T > 0, \, \omega_0 R \ll c.$$

- (a) Berechnen Sie das elektrische Feld $\underline{E}(\underline{r},t)$ und die magnetische Induktion $\underline{B}(\underline{r},t)$ innerhalb und außerhalb des Zylinders für die drei Zeitintervalle. (Vernachlässigen Sie die Zeitpunkte t=0 und t=T, für die $\omega(t)$ nicht differenzierbar ist.)
- (b) Berechnen Sie die Energiestromdichte $\underline{S}(\underline{r},t)$.

Aufgabe 17 (7 Punkte): MAXWELL'scher Spannungstensor, Strahlungsdruck

(a) Zeigen Sie, dass folgende Vektoridentität (vgl. Vorlesung) gilt:

$$\underline{B} \times (\nabla \times \underline{B}) = \frac{1}{2} \nabla (\underline{B} \cdot \underline{B}) - (\underline{B} \cdot \nabla) \underline{B}$$
$$= \nabla \cdot \left\{ \underline{1} \underline{1} (\underline{B} \cdot \underline{B}) - \underline{B} \otimes \underline{B} \right\} + \underline{B} (\nabla \cdot \underline{B}),$$

wobei $\underline{B} \otimes \underline{B}$ das dyadische Produkt und die Divergenz eines Tensors $\underline{\underline{T}}$ ein Vektor mit Komponenten $\left(\nabla \cdot \underline{\underline{T}}\right)_{\beta} = \left(\partial/\partial x_{\alpha}\right) T_{\alpha\beta}$ (EINSTEIN'sche Summenkonvention) ist.

(b) Eine ebene elektromagnetische Welle falle senkrecht auf eine Wand. Die Welle werde beschrieben durch das Vektorpotential

$$A(r,t) = A_0 \cos(k \cdot r - \omega t),$$

wobei $\underline{A} \perp \underline{k}$. Berechnen Sie den Strahlungsdruck auf die Wand für die zwei Fälle, dass

- (i) die Wand schwarz sei, d. h. alle Strahlung vollständig absorbiere,
- (ii) die Wand ideal verspiegelt sei, d. h. Strahlung mit unveränderter Intensität reflektiere.

Aufgabe 18 (3 Punkte): COULOMB- oder transversale Eichung

Beweisen Sie, dass mit der Coulomb-Eichung $\nabla \cdot \underline{A} = 0$ der elektromagnetischen Potentiale die inhomogene Wellengleichung für das Vektorpotential \underline{A} die Form

$$\Delta \underline{A} - \mu_0 \varepsilon_0 \frac{\partial^2}{\partial t^2} \underline{A} = -\mu_0 \underline{j}_{\perp}$$

annimmt, wobei $\underline{j}_{\perp}=\underline{j}-\underline{j}_{\parallel}$ der durch $\nabla\cdot\underline{j}_{\perp}=0$ gemäß Helmholtz-Theorem eindeutig bestimmte transversale (quellenfreie) Anteil der Stromdichte \underline{j} ist.

Hinweis: Identifizieren Sie das skalare Potential ϕ in dieser Eichung, und verwenden Sie die Kontinuitätsgleichung für die Ladungsdichte.

6. Übung TPIII WS 16/17

Scheinkriterien:

- Mindestens 50% der Übungspunkte (Abgabe in 3er Gruppen).
- Regelmäßige, aktive Teilnahme an den Tutorien.
- Vorstellen einer Übungsaufgabe im Tutorium.
- Bestandene Klausur. Diese findet am 10.02.2017 um 08:00 s.t. im H3010 statt.

	Мо	Di	Mi	Do	Fr
08-10					EW 203 ES
10-12				EW 226 LE	EW 114 LE EW 226 BL
12-14		EW 114 AH EW 731 AM	EW 203 ES		
14-16				EW 226 AM	

	Sprechstunden					
ES	Prof. Dr. Eckehard Schöll, PhD	nach Vereinbarung	EW 735			
AM	Anne-Kathleen Malchow	Mo 14-15	EW 060			
BL	Benjamin Lingnau	Di 15-16	EW 629			
AH	Alice von der Heydt	Mi 15:30-16:30	EW 266			
LE	Lasse Ermoneit	Do 13:30-14:30	EW 060			