Prof. Dr. Eckehard Schöll, PhD

Dr. Alice von der Heydt, Dr. Benjamin Lingnau, Lasse Ermoneit, Anne-Kathleen Malchow

7. Übungsblatt - Theoretische Physik III: Elektrodynamik

Abgabe: Di. 13.12.2016 bis 12:00 Uhr, Briefkasten ER-Gebäude

Aufgabe 19 (9 Punkte): Retardierte Potenziale

Betrachten Sie einen elektrischen Dipol $\underline{p}(t)$ im Ursprung. Zeigen Sie ausgehend vom Vektorpotenzial A in elektrischer Dipolstrahlungsnäherung

$$\underline{A}(\underline{r},t) = \frac{\mu_0}{4\pi r} \underline{\dot{p}} \left(t - \frac{r}{c} \right)$$

und unter Benutzung der Lorenz-Eichung, dass für die Felder in Fernfeldnäherung gilt:

$$\begin{split} &\underline{B}(\underline{r},t) = \frac{\mu_0}{4\pi c} \frac{1}{r^2} \left[\underline{\ddot{p}} \left(t - \frac{r}{c} \right) \times \underline{r} \right] + O\left(\frac{1}{r^2} \right) \,, \\ &\underline{E}(\underline{r},t) = \frac{1}{4\pi \epsilon_0 c^2} \frac{1}{r^3} \left[\underline{\ddot{p}} \left(t - \frac{r}{c} \right) \times \underline{r} \right] \times \underline{r} + O\left(\frac{1}{r^2} \right) \,. \end{split}$$

Aufgabe 20 (8 Punkte): Dipolstrahlung

Gegeben seien die folgenden elektrischen und magnetischen Felder in Kugelkoordinaten:

$$\underline{E}(\underline{r},t) = \frac{E_0}{r} e^{i(kr - \omega t)} \sin \vartheta \ \underline{e}_{\vartheta}, \qquad \qquad \underline{B}(\underline{r},t) = \frac{B_0}{r} e^{i(kr - \omega t)} \sin \vartheta \ \underline{e}_{\varphi}$$

Diese beschreiben eine Kugelwelle mit dem Abstrahlungsprofil eines Dipolstrahlers. Im Folgenden betrachten wir die Felder in Fernfeldnäherung, d.h., nur die jeweils höchsten Ordnungen in r werden beibehalten.

1. Zeigen Sie, dass in dieser Näherung die gegebenen Felder die Wellengleichungen

$$\Box E(r,t) = 0, \qquad \Box B(r,t) = 0$$

erfüllen. Welcher Zusammenhang muss dafür zwischen ω und k bestehen?

- 2. Bestimmen Sie B_0 , sodass die Felder in Fernfeldnäherung die Maxwell-Gleichungen erfüllen.
- 3. Berechnen Sie die zeitlich gemittelte abgestrahlte Leistung mit Hilfe des Poynting-Vektors $\underline{S}(\underline{r},t) = \left(\operatorname{Re}\underline{E}(\underline{r},t)\right) \times \left(\operatorname{Re}\underline{H}(\underline{r},t)\right)$:

$$\langle P \rangle_t = \oint_{\mathcal{W}} \underline{\mathrm{d}f} \cdot \langle \underline{S}(\underline{r}, t) \rangle_t$$

Dabei bezeichnet ∂V den Rand eines beliebigen einfach zusammenhängenden Gebietes V um den Ursprung. $\langle \; \cdot \; \rangle_t$ bezeichnet das zeitliche Mittel:

$$\langle \underline{S}(\underline{r},t) \rangle_t := \lim_{T \to \infty} \frac{1}{T} \int_0^T S(\underline{r},t) dt$$

Hinweis: Wählen Sie ∂V geschickt, um die Rechnung zu vereinfachen.

7. Übung TPIII WS 16/17

Aufgabe 21 (3 Punkte): Begrenzte Energieausbreitungsgeschwindigkeit

Zeigen Sie allgemein, dass die Energiegeausbreitungsschwindigkeit des elektromagnetischen Felds,

$$\underline{v}_E := \frac{\underline{S}}{w},$$

mit dem Poyntingvektor \underline{S} und der Energiedichte w, begrenzt ist durch

$$|\underline{v}_E| \leq c$$
.

 $\textit{Hinweis:} \ \mathsf{Verwenden} \ \mathsf{Sie} \ \mathsf{eine} \ \mathsf{geeignete} \ \mathsf{Absch\"{a}tzung} \ \mathsf{f\"{u}r} \ |\underline{E}|^2 |\underline{B}|^2 - \tfrac{1}{4} \left(|\underline{E}|^2 + |\underline{B}|^2 \right)^2$

Scheinkriterien:

- Mindestens 50% der Übungspunkte (Abgabe in 3er Gruppen).
- Regelmäßige, aktive Teilnahme an den Tutorien.
- Vorstellen einer Übungsaufgabe im Tutorium.
- Bestandene Klausur. Diese findet am 10.02.2017 um 08:00 s.t. im H3010 statt.

	Мо	Di	Mi	Do	Fr
08-10					EW 203 ES
10-12				EW 226 LE	EW 114 LE EW 226 BL
12-14		EW 114 AH EW 731 AM	EW 203 ES		
14-16				EW 226 AM	

Sprechstunden						
ES	Prof. Dr. Eckehard Schöll, PhD	nach Vereinbarung	EW 735			
AM	Anne-Kathleen Malchow	Mo 14-15	EW 060			
BL	Benjamin Lingnau	Di 15-16	EW 629			
AH	Alice von der Heydt	Mi 15:30-16:30	EW 266			
LE	Lasse Ermoneit	Do 13:30-14:30	EW 060			