Prof. Dr. Eckehard Schöll, PhD

Dr. Alice von der Heydt, Dr. Benjamin Lingnau, Lasse Ermoneit, Anne-Kathleen Malchow

8. Übungsblatt - Theoretische Physik III: Elektrodynamik

Abgabe: Di. 03.01.2017 bis 12:00 Uhr, Briefkasten ER-Gebäude

Aufgabe 22 (6 Punkte): Kugelwellen

Zeigen Sie, dass die lineare Superposition ebener Wellen e $^{i(\underline{q}\cdot\underline{r}-\omega t)}$ mit der Amplitudenfunktion

$$\hat{u}(\underline{q},\omega) = \frac{2\,\delta(\omega-\omega_0)}{q^2-q_0^2} \quad \text{mit } q := \left|\underline{q}\right|$$

eine Kugelwelle darstellt. Es ist sinnvoll, die Integrationen bezüglich \underline{q} in Kugelkoordinaten und mit Hilfe des Residuenkalküls auszuführen.

Aufgabe 23 (7 Punkte): Beugung an einer Kreisblende

In einer unendlich großen, ideal leitenden Ebene befinde sich ein kreisrundes Loch vom Durchmesser D. Senkrecht auf diesen Blendenschirm (Normale \underline{n}) falle von einer weit entfernten Punktquelle aus monochromatisches Licht der Wellenlänge λ (Wellenvektor $\underline{k} \parallel \underline{n}$). Berechnen Sie das Fraunhofer'sche Beugungsmuster dieser Anordnung, d. h. die zweidimensionale Intensitätsverteilung $I(x',y') \sim |\phi(x',y')|^2$. Nutzen Sie die Axialsymmetrie der Verteilung, um die Lösung durch Bessel-Funktionen auszudrücken:

$$J_0(u) := \frac{1}{2\pi} \int_0^{2\pi} \mathrm{d}\varphi \, \cos(u \cos \varphi) \, \, \mathsf{und} \qquad \qquad J_1(u) := \int_0^1 \mathrm{d}v \, uv \, J_0(uv).$$

Stellen Sie die Intensitätsverteilung in geeigneten Koordinaten graphisch dar.

Aufgabe 24 (7 Punkte): Beugung an einem Gitter

Eine ebene Welle $\phi(\underline{r},t)=\phi_0\exp\left[i(\underline{k}\cdot\underline{r}-\omega t)\right]$ falle senkrecht auf eine Blendenschirm bei z=0. Die Blende besitze $(2N_y+1)(2N_x+1)$ Löcher in einem Rechteckraster, d. h. $(2N_y+1)$ Lochreihen (Abstand der Zentren Δy in y-Richtung) bestehend aus je $(2N_x+1)$ Löchern mit Abstand Δx . Die rechteckigen Löcher haben die Abmessungen L_x und L_y .

- (a) Erklären Sie die KIRCHHOFF'sche Näherung. Gehen Sie dabei insbesondere auf die sog. KIRCHHOFF'schen Annahmen ein.
- (b) Bestimmen Sie ausgehend von der skalaren KIRCHHOFF-Identität in der Fernzone,

$$\phi(\underline{r}') = \frac{1}{4\pi} \int_{\partial V} df_R \left\{ \frac{\partial}{\partial n} \phi(\underline{r}) - ik\phi(\underline{r}) \cos(\vartheta) \right\} \frac{e^{ikR}}{R}, \quad R := |\underline{r} - \underline{r}'|, \ \vartheta = \angle(\underline{R}, d\underline{f}_R),$$

die Feldverteilung $\phi(\underline{r}')$ hinter der Blende in Fraunhofer'scher Beugung ($\lambda \ll L_{x,y} \ll R$).

(c) Bestimmen Sie die Intensitätsverteilung $I(x',y') \sim |\phi(x',y',z'=d)|^2$ des Beugungsbildes in einer Beobachtungsebene parallel zur Blendenebene (im Abstand d). Stellen Sie I(x',y') graphisch dar.

8. Übung TPIII WS 16/17

Scheinkriterien:

- Mindestens 50% der Übungspunkte (Abgabe in 3er Gruppen).
- Regelmäßige, aktive Teilnahme an den Tutorien.
- Vorstellen einer Übungsaufgabe im Tutorium.
- Bestandene Klausur. Diese findet am 10.02.2017 um 08:00 s.t. im H3010 statt.

	Мо	Di	Mi	Do	Fr
08-10					EW 203 ES
10-12				EW 226 LE	EW 114 LE EW 226 BL
12-14		EW 114 AH EW 731 AM	EW 203 ES		
14-16				EW 226 AM	

	Sprechstunden					
ES	Prof. Dr. Eckehard Schöll, PhD	nach Vereinbarung	EW 735			
AM	Anne-Kathleen Malchow	Mo 14-15	EW 060			
BL	Benjamin Lingnau	Di 15-16	EW 629			
AH	Alice von der Heydt	Mi 15:30-16:30	EW 266			
LE	Lasse Ermoneit	Do 13:30-14:30	EW 060			