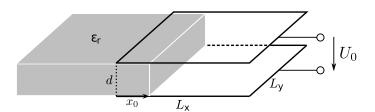
Prof. Dr. Eckehard Schöll, PhD

Dr. Alice von der Heydt, Dr. Benjamin Lingnau, Lasse Ermoneit, Anne-Kathleen Malchow

9. Übungsblatt – Theoretische Physik III: Elektrodynamik

Abgabe: Di. 10.01.2017 bis 12:00 Uhr, Briefkasten ER-Gebäude

Aufgabe 25 (10 Punkte): Kugel im Dielelektrikum


Eine ungeladene Kugel vom Radius R mit der Dielektrizitätskonstanten ϵ_1 befindet sich eingebettet in einem unendlich ausgedehnten Dielektrikum mit der Dielektrizitätskonstanten ϵ_2 und in einem elektrischen Feld \underline{E} . Das Feld ist im Unendlichen homogen und hat die Feldstärke \underline{E}_0 . Verwenden Sie für das elektrische Potenzial inner- bzw. außerhalb der Kugel den Ansatz

$$\phi_1(\underline{r}) = a_1 \underline{E}_0 \cdot \underline{r}, \qquad \phi_2(\underline{r}) = \left(a_2 + \frac{a_3}{|\underline{r}|^3}\right) \underline{E}_0 \cdot \underline{r}$$
 (1)

mit den Koeffizienten $a_1, a_2, a_3 \in \mathbb{R}$, die im Folgenden bestimmt werden sollen.

- (a) Diskutieren Sie den Zusammenhang der \underline{E} und \underline{D} -Felder an der Grenzfläche.
- (b) Zeigen Sie, dass der obige Ansatz (1) die Poisson-Gleichung erfüllt.
- (c) Berechnen Sie das elektrische Feld innerhalb und außerhalb der Kugel.
- (d) Diskutieren Sie das Ergebnis für den Fall $\epsilon_1 > 1, \epsilon_2 = 1$. Skizzieren Sie den Feldverlauf.

Aufgabe 26 (7 Punkte): Kraft auf ein Dielektrikum im Kondensator

In einem idealen Plattenkondensator (Randeffekte werden vernachlässigt) mit rechteckiger Plattenfläche L_xL_y und dem Plattenabstand d ist ein quaderförmiges Dielektrikum ($\epsilon>1,\ \mu=1$, Abmessungen $L_x\times L_y\times d$) so gelagert, dass es sich reibungsfrei parallel zu den Platten (o.B.d.A. in x-Richtung) verschieben lässt. Das Dielektrikum sei soweit in den Kondensator geschoben, dass es auf der Länge x_0 in den Kondensator hineinrage. Zwischen den Kondensatorplatten liege eine konstante Spannung U_0 an.

Leiten Sie einen Ausdruck für die Energieänderung her, wenn sich das Dielektrikum um $\mathrm{d}x$ verschiebt. Bestimmen Sie daraus Betrag und Richtung der Kraft auf das Dielektrikum.

Aufgabe 27 (3 Punkte): Kontinuitätsgleichung in Materie

Zeigen Sie, dass in der Elektrodynamik in Materie die Kontinuitätsgleichung für die freien Ladungen ρ_f und die freie Stromdichte \underline{j}_f gilt. Zeigen Sie weiterhin, dass auch die Polarisationsladungen ρ_p und die Polarisationsstromdichte \underline{j}_p eine Kontinuitätsgleichung erfüllen. Diskutieren Sie die Rolle der Magnetisierungsstromdichte in diesem Kontext.

9. Übung TPIII WS 16/17

Scheinkriterien:

- Mindestens 50% der Übungspunkte (Abgabe in 3er Gruppen).
- Regelmäßige, aktive Teilnahme an den Tutorien.
- Vorstellen einer Übungsaufgabe im Tutorium.
- Bestandene Klausur. Diese findet am 10.02.2017 um 08:00 s.t. im H3010 statt.

	Мо	Di	Mi	Do	Fr
08-10					EW 203 ES
10-12				EW 226 LE	EW 114 LE EW 226 BL
12-14		EW 114 AH EW 731 AM	EW 203 ES		
14-16				EW 226 AM	

	Sprechstunden					
ES	Prof. Dr. Eckehard Schöll, PhD	nach Vereinbarung	EW 735			
AM	Anne-Kathleen Malchow	Mo 14-15	EW 060			
BL	Benjamin Lingnau	Di 15-16	EW 629			
AH	Alice von der Heydt	Mi 15:30-16:30	EW 266			
LE	Lasse Ermoneit	Do 13:30-14:30	EW 060			