Prof. Dr. Harald Engel

Jan Totz, Maria Zeitz, Manuel Katzer, Willy Knorr, Ché Netzer, Philip Knospe

10. Übungsblatt – Theoretische Physik I: Mechanik

Abgabe: Bis Mo. 16.01.2017 10:00 im Briefkasten am Hintereingang des ER-Gebäudes Bei den schriftlichen Ausarbeitungen werden sehr ausführliche Kommentare zum Vorgehen erwartet. Dafür gibt es auch Punkte! Bitte das Deckblatt von der Homepage verwenden! Die Abgabe erfolgt in Dreiergruppen.

Aufgabe 27 (10 Punkte): Streuung

Betrachten Sie die Streuung eines Projektilteilchens der Masse m_2 an einem Targetteilchen der Masse m_1 , die über ein Potential $U(|\mathbf{r}_1-\mathbf{r}_2|)$ wechselwirken. In der Vorlesung wurde gezeigt, dass sich dieses Zweikörperproblem im Schwerpunktssystem auf die Bewegung eines fiktiven Teilchens der Masse μ in einem effektiven Zentralfeld $U_{\rm eff}(r)$ reduziert. Das Teilchen möge aus dem Unendlichen mit der Energie E und dem Drehimpuls $L=|\mathbf{L}|$ in Richtung des Kraftzentrums bei $\mathbf{r}=0$ einlaufen und an diesem um einen Winkel χ abgelenkt werden. Es wurde gezeigt, dass der Streuwinkel χ durch

$$\chi = |\pi - 2\varphi_{\infty}| \text{ mit } \varphi_{\infty} = \int_{r_{\min}}^{\infty} \frac{L}{r^2 \sqrt{2\mu \left[E - U_{\text{eff}}(r)\right]}} dr$$

gegeben ist. Dabei ist r_{\min} der minimale Abstand zwischen Teilchen und Kraftzentrum. Hinweis: Bestimmen Sie zunächst einen Ausdruck für $\varphi(r)$ aus der Energie des Systems und der Drehimpulserhaltung.

- (a) Bei der Rutherford-Streuung, d.h. Streuung im Coulomb-Potenzial $U(r)=\frac{\alpha}{r}$ mit $\alpha=\frac{Z_1Z_2e^2}{4\pi\epsilon_0}$ mit den Kernladungszahlen Z_1 und Z_2 , werden Alphateilchen auf eine Goldfolie geschossen. Geben Sie unter der Annahme, dass die Alphateilchen eine Energie von $E=4\dots 8$ MeV haben, eine Abschätzung für den minimalen Abstand r_{\min} zum Kraftzentrum an.
- (b) Vervollständigen Sie die Rechnung in der Vorlesung und beweisen Sie, dass der differenzielle Streuquerschnitt $d\sigma(\chi)$ für die Rutherford-Streuung gegeben ist durch

$$\frac{d\sigma(\chi)}{d\Omega} = \left(\frac{\alpha}{4E}\right)^2 \sin^{-4}\frac{\chi}{2}.$$

(c) Wie groß ist der totale Streuquerschnitt?

Aufgabe 28 (10 Punkte): Periheldrehung

Auf dem Weg von Perihel zu Perihel ändert sich die Position des Perihels um den Winkel:

$$\Delta \varphi = 2 \int_{r_{\min}}^{r_{\max}} \frac{L/r^2}{\sqrt{2m[E - U(r)] - L^2/r^2}} \, dr.$$
 (1)

Je nachdem, ob das Integral ein rationales Vielfaches von π ist, schließt sich die Bahnkurve oder nicht.

(a) Zeigen Sie zunächst, das sich Gl. (1) als

$$\Delta \varphi = -2\sqrt{2m} \frac{\partial}{\partial L} \int_{r_{\min}}^{r_{\max}} \sqrt{E - \frac{L^2}{2mr^2} - U(r)} \, dr$$
 (2)

schreiben lässt.

10. Übung WS16/17

Wir wissen, dass das Gravitationsotential $U(r)\sim -1/r$ zu geschlossenen Bahnen führt. Hat das Potential jedoch nicht genau diese Form, sondern ist um einen kleinen Beitrag $\delta U(r)$ gestört, so hat dies zur Folge, dass die Bahnkurve i.A. bei endlicher Bewegung nicht mehr geschlossen bleibt.

(b) Betrachten Sie das Potential $U(r)=-\gamma Mm/r+\delta U(r)$, mit $|\delta U(r)|\ll \gamma Mm/r$, $\forall~r\in[r_{\min},r_{\max}]$. Berechnen Sie $\Delta\varphi$ und zeigen Sie, dass in niedrigster Ordnung in $\delta U(r)$ gilt:

$$\delta\varphi = \Delta\varphi - 2\pi \approx 2m \frac{\partial}{\partial L} \left[\frac{1}{L} \int_0^{\pi} r^2 \delta U(r) \, \mathrm{d}\varphi \right]. \tag{3}$$

Der Winkel $\delta \varphi$ ist dabei der Unterschied zu einer geschlossenen Bahn bei einem Umlauf. Mit $r=r(\varphi)$ wird die ungestörte Bahn der Bewegung mit $\delta U(r)=0$ bezeichnet.

Hinweise: Um $\delta \varphi$ in erster Näherung zu erhalten, kann die Integration entlang der ungestörten Keplerbahn durchgeführt werden. Benutzen Sie bekannten Relationen aus der Vorlesung.

- (c) Bestimmen Sie $\delta \varphi$ für die Störpotentiale (i) $\delta U = -\alpha/r^2$ und (ii) $\delta U = -\beta/r^3$.
- (d) Bonus: Bestimmen Sie numerisch die Bahnkurve für ein Potential

$$U(r) = -\frac{1}{r} - \frac{0.02}{r^3}$$

mit den Anfangsbedingungen

$$\varphi_0 = 0$$
, $\dot{\varphi}_0 = 1$, $r_0 = 1$, $\dot{r}_0 = 0.6$, $m = 1$

und plotten Sie die Trajektorie in der x-y- Ebene fr etwa 10 Umläufe. Wie viel beträgt die Periheldrehung etwa?

Vorlesung:

- Dienstag 8:30 Uhr 10:00 Uhr im EW 202.
- Mittwoch 8:30 Uhr 10:00 Uhr im EW 202.

Webseite:

• Details zur Vorlesung, Vorlesungsmitschrift und aktuelle Informationen sowie Sprechzeiten auf der TU Webseite mit Direktzugang: 176875

Scheinkriterien: • Mindestens 50% der Übungspunkte.

• Bestandene Klausur.

Bemerkung: Bei den Übungsaufgaben werden nur Originalabgaben akzeptiert. Keine Kopien oder elektronischen Abgaben. Bei Programmieraufgaben ist verwendeter Code ausgedruckt mit abzugeben.