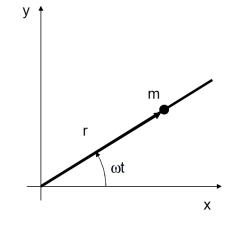
Prof. Dr. Harald Engel

Jan Totz, Maria Zeitz, Manuel Katzer, Willy Knorr, Ché Netzer, Philip Knospe

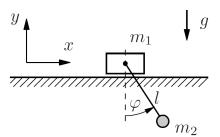
6. Übungsblatt – Theoretische Physik I: Mechanik

Abgabe: Bis Mo. 05.12.2016 10:00 im Briefkasten am Hintereingang des ER-Gebäudes Bei den schriftlichen Ausarbeitungen werden ausführliche Kommentare zum Vorgehen erwartet. Dafür gibt es auch Punkte! Bitte das Deckblatt von der Homepage verwenden! Die Abgabe erfolgt in Dreiergruppen.


Aufgabe 15 (4 Punkte): Rotationsparaboloid

Bestimmen Sie die Zwangskräfte auf den Rotationsparaboloiden aus Aufgabe 12 mit Hilfe der Lagrange Gleichungen 1. Art. Zeigen Sie, dass die Zwangskraft senkrecht auf dem Parabolodien steht.

Aufgabe 16 (6 Punkte): Kugel auf rotierendem Draht


Die Masse m gleite reibungslos auf einem masselosen Draht, der mit einer konstanten Kreisfrequenz ω um den Ursprung rotiert. Die Bewegung findet in der x-y-Ebene statt. Vernachlässigen Sie die potentielle Energie.

- (a) Stellen Sie die Lagrange-Funktion für das Teilchen auf.
- (b) Lösen Sie die Lagrange-Gleichung 2. Art für die Anfangsbedingungen $r(0)=r_0$ und $\dot{r}(0)=0$. Was passiert für große Zeiten $t\to\infty$? Ist die Energie erhalten? Begründen Sie.
- (c) Bestimmen Sie mithilfe der Lagrange-Gleichungen 1. Art die Zwangskräfte auf den Draht.

Aufgabe 17 (10 Punkte): Gleitpendel

Die Masse m_1 sei auf einer horizontalen Schiene gelagert und durch einen Faden der Länge l mit der Masse m_2 verbunden. Zwischen der Masse m_1 und der Schiene besteht Gleitreibung. Der Betrag der Gleitreibungskraft wird über die Zwangskraft von der Schwingung der Masse m_2 beiinflusst.

Ermitteln Sie mithilfe der Lagrange-Gleichungen 1. Art sowohl die Normalkraft N zwischen m_1 und der Schiene wie auch die Bewegungsgleichungen des Systems. Vergessen Sie nicht die Rayleighsche Dissipationsfunktion.

Hinweis: Die Gleitreibungskraft ist in erster Näherung unabhängig vom Betrag der Geschwindigkeit und hängt von der Normalkraft N ab. Die Dissipationsfunktion kann in diesem Fall mit

$$D = \mu N |\dot{x}_1|$$

angesetzt werden.

(Die Zwangskraft des Fadens ist nicht gesucht, kann aber als Bonus berechnet werden.)

6. Übung WS16/17

Webseite:

Vorlesung: • Dienstag 8:30 Uhr – 10:00 Uhr im EW 202.

• Mittwoch 8:30 Uhr – 10:00 Uhr im EW 202.

• Details zur Vorlesung, Vorlesungsmitschrift und aktuelle Informationen sowie Sprechzeiten auf der TU Webseite mit Direktzugang: 176875

Scheinkriterien: • Mindestens 50% der Übungspunkte.

• Bestandene Klausur.

Bemerkung: Bei den Übungsaufgaben werden nur Originalabgaben akzeptiert. Keine Kopien oder elektronischen Abgaben. Bei Programmieraufgaben ist verwendeter Code ausgedruckt mit abzugeben.