Prof. Dr. Andreas Knorr

Dr. Alexander Carmele, Andreas Koher, Alexander Kraft

10. Übungsblatt – Quantenmechanik II

Abgabe: Di. 31.01.2017 um 8.15 Uhr, Beginn der Vorlesung!

Bei den schriftlichen Ausarbeitungen werden ausführliche Kommentare zum Vorgehen erwartet. Dafür gibt es auch Punkte! Die Abgabe soll in Dreiergruppen erfolgen.

Aufgabe 18 (20 Punkte): Homogenes Elektronengas

In der Vorlesung wurden die Hartree-Fock-Gleichungen zur Beschreibung eines Mehrelektronensystems im Potential $V_{\mathsf{Kern}}(\mathbf{r})$ vorgestellt:

$$\begin{split} \varepsilon_{\alpha}\varphi_{\alpha}(\mathbf{r}) &= \left(-\frac{\hbar^2}{2m}\Delta + V_{\mathsf{Kern}}(\mathbf{r})\right)\varphi_{\alpha}(\mathbf{r}) \\ &+ \frac{e^2}{4\pi\varepsilon_0}\sum_{\beta}\int d^3r' \frac{|\varphi_{\beta}(\mathbf{r}')|^2}{|\mathbf{r}-\mathbf{r}'|}\varphi_{\alpha}(\mathbf{r}) \\ &- \frac{e^2}{4\pi\varepsilon_0}\sum_{\beta}\delta_{m_{s_{\alpha}},m_{s_{\beta}}}\int d^3r' \frac{\varphi_{\beta}^*(\mathbf{r}')\varphi_{\beta}(\mathbf{r})}{|\mathbf{r}-\mathbf{r}'|}\varphi_{\alpha}(\mathbf{r}') \end{split}$$

Es seien nun ebene Wellen wie folgt definiert: $\varphi_{\mathbf{k}_{\alpha}}(\mathbf{r}) = \frac{1}{\sqrt{V}} e^{i\mathbf{k}_{\alpha}\cdot\mathbf{r}}$. Die Zustände seien durch das Indexpaar $\alpha = (\mathbf{k}_{\alpha}, m_{s_{\alpha}})$ definiert, wobei \mathbf{k} der Wellenzahlvektor der ebenen Welle ist und $m_{s_{\alpha}}$ die Spinquantenzahl. Betrachten Sie das Problem für T=0.

- 1. Betrachten Sie zuerst ein freies System mit N Elektronen ohne Coulombwechselwirkungen im Grundzustand. Welche Zustände sind besetzt? Argumentieren Sie, dass eine Fermikante mit $|\mathbf{k}| < k_F$ existiert.
 - (a) Zeigen Sie, dass die Fermikante durch $k_F=(3\pi^2n)^{1/3}$ gegeben ist, wobei $n=\frac{N}{V}$ die Elektronendichte im Volumen V sei.
 - (b) Bestimmen Sie die kinetische Energie ε_{α}^{0} eines freien Elektrons (also ohne Betrachtung der Coulombanteile) im Zustand $\alpha=(\mathbf{k},m_s)$.
- 2. Im sogenannten Jellium-Modell wird ein konstantes, gleichmäßig verteiltes Kernpotential angenommen: $V_{\mathsf{Kern}}(\mathbf{r}) = -V_0$ mit $V_0 = n \frac{e^2}{4\pi\varepsilon_0} V_{q=0}$. Berechnen Sie die Hartree-Fock Energien ε_{α} für dieses Modell in dem Sie die ebenen Wellen φ_{α} einsetzen. Man erhält:

$$\varepsilon_k = \frac{\hbar^2 k^2}{2m} - \frac{2e^2}{4\pi^2 \varepsilon_0} k_F \cdot \tilde{f}(k/k_F) \quad \text{mit} \quad \tilde{f}(x) = \frac{1}{2} + \frac{1-x^2}{4x} \ln \left| \frac{1+x}{1-x} \right|$$

Zeigen Sie zuerst, dass der direkte Term nicht von ${\bf k}$ abhängt und daher durch das Einteilchenpotential $-V_0$ aufgehoben wird. Bestimmen Sie dann den Austauschterm.

- 3. Geben Sie die mittlere kinetische Energie und mittlere Austauschenergie im gesamten System an.
- 4. Diskutieren Sie unter Verwendung des Ergebnisses für die gesamte mittlere Energie, warum sich ein Bindungszustand für eine bestimmte Elektronendichte einstellt.

bitte Rückseite beachten

10. Übung TPV WS2016/17

Tipps:

- Nutzen Sie $\frac{1}{V}\sum_{|\mathbf{k}| < k_F} pprox \frac{1}{(2\pi)^3} \int_{|\mathbf{k}| < k_F} d^3k$
- \bullet Falls hilfreich, verwenden Sie $\int\limits_{-1}^1 \frac{1}{k^2+k'^2-2kk'x} dx = \frac{1}{kk'} \ln \frac{|k+k'|}{|k-k'|}$
- Ein Weg führt über die Zerlegung des Coulombpotentials in Fourierkomponenten $V(\mathbf{s})=\frac{1}{V}\sum_{\mathbf{q}}V_qe^{i\mathbf{q}\cdot\mathbf{s}}$. Für $V(\mathbf{s})=\frac{1}{|\mathbf{s}|}$ erhält man $V_q=\frac{4\pi}{q^2}$ wenn $q\neq 0$ und $V_0=\int_Vd^3s\frac{1}{|\mathbf{s}|}$ wenn q=0.