Prof. Dr. Andreas Knorr

Dr. Alexander Carmele, Andreas Koher, Alexander Kraft

5. Übungsblatt - Quantenmechanik II

Abgabe: Di. 06.12.2016 um 8.15 Uhr, Beginn der Vorlesung!

Bei den schriftlichen Ausarbeitungen werden ausführliche Kommentare zum Vorgehen erwartet. Dafür gibt es auch Punkte! Die Abgabe soll in Dreiergruppen erfolgen.

Aufgabe 9 (10 Punkte): Hamiltonoperator in zweiter Quantisierung

Gegeben sei der Hamiltonoperator in 2. Quantisierung:

(1)
$$H = \int d\mathbf{r} \Psi^{\dagger}(\mathbf{r}) \left(\frac{p^2}{2m} + V(\mathbf{r})\right) \Psi(\mathbf{r})$$

ohne Vielteilchenwechselwirkungen.

1. Berechnen Sie die Bewegungsgleichung für $\Psi(\mathbf{r},t)$ mit Hilfe der Heisenbergbewegungsgleichung für ein Fermionisches und ein Bosonisches Feld $\Psi(\mathbf{r},t)$. Zeigen Sie insbesondere, dass gilt:

(2)
$$i\hbar \frac{\mathrm{d}}{\mathrm{d}t} \Psi(\mathbf{r}, t) = \left(-\frac{\hbar^2}{2m} \Delta + V(\mathbf{r}) \right) \Psi(\mathbf{r}, t)$$

also die Schrödingergleichung für Feldoperatoren.

2. Wiederholen Sie (aus der Vorlesung), dass für einen Hamiltonoperator der Form: $H = \sum_n \varepsilon_n a_n^{\dagger} a_n$ unter Verwendung der Heisenbergbewegungsgleichung, die Zeitabhängigkeit von a_n zu:

(3)
$$a_n^{\dagger}(t) = e^{\frac{i}{\hbar}\varepsilon_n(t-t_0)}a_n^{\dagger}(t_0)$$

ergibt. Tun Sie dies sowohl für Bosonen und Fermionen.

3. Zeigen Sie unter Verwendung der vorherigen Punkte, dass aus dem Ansatz $\Psi(\mathbf{r},t) = \sum_n a_n(t) \varphi_n(\mathbf{r})$ die Gültigkeit der stationären Schrödingergleichung:

(4)
$$\left(-\frac{\hbar^2}{2m}\Delta + V(\mathbf{r})\right)\varphi_n(\mathbf{r}) = \varepsilon_n\varphi_n(\mathbf{r})$$

folgt.

Aufgabe 10 (10 Punkte): Symmetrien der Zweiteilchenwellenfunktion

Der Zustand bei dem sich zwei Teilchen $\mathbf{x}_1 = (\mathbf{r}_1, \mathbf{s}_1)$, $\mathbf{x}_2 = (\mathbf{r}_2, \mathbf{s}_2)$ im System befinden und zwar an den Orten \mathbf{r}_1 und \mathbf{r}_2 mit den Spins \mathbf{s}_1 und \mathbf{s}_2 ist gegeben als:

(5)
$$|\mathbf{x}_2, \mathbf{x}_1\rangle = \frac{1}{\sqrt{2}} \Psi^{\dagger}(\mathbf{x}_2) \Psi^{\dagger}(\mathbf{x}_1) |0\rangle$$

mit dem Vakuumzustand $|0\rangle$. Der Zustand bei dem ein Teilchen sich im Zustand λ_1 befindet und ein weiteres im Zustand λ_2 ist gegeben als:

(6)
$$|\lambda_1, \lambda_2\rangle = a_{\lambda_1}^{\dagger} a_{\lambda_2}^{\dagger} |0\rangle.$$

1. Berechnen Sie die Zweiteilchenwellenfunktion, die definiert ist als:

(7)
$$\Phi_{\lambda_1,\lambda_2}(\mathbf{x}_1,\mathbf{x}_2) = \langle \mathbf{x}_1,\mathbf{x}_2 | \lambda_1,\lambda_2 \rangle$$

sowohl für Fermionen als auch für Bosonen. Folgen Sie dabei dem Ansatz aus der Vorlesung.

2. Überprüfen Sie für den Fermionischen und für den Bosonischen Fall wie sich $\Phi_{\lambda_1,\lambda_2}(\mathbf{x}_1,\mathbf{x}_2)$ unter der Vertauschung der beiden Koordinaten \mathbf{x}_1 , \mathbf{x}_2 verhält.