Prof. Dr. Kathy Lüdge

Alexander Kraft, Leonhard Schülen, Thomas Martynec, Jonah Friederich, Isaac Tesfaye

11. Übungsblatt – Theoretische Physik III: Elektrodynamik

Abgabe: Mi. 22.01.2020 bis 12:00 Uhr, Briefkasten ER-Gebäude

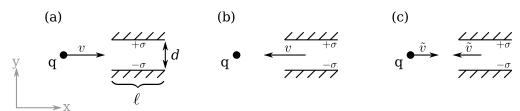
Aufgabe 29 (5 Punkte): Vierer-Beschleunigung

Verwenden Sie die in der Vorlesung eingeführten Ausdrücke für Vierer-Geschwindigkeit u^{μ} und Eigenzeit τ , um die Vierer-Beschleunigung $b^{\mu} = \mathrm{d}u^{\mu}/\mathrm{d}\tau$ zu bestimmen.

- (a) Zeigen Sie, dass im MINKOWSKI-Raum die Beschleunigung stets orthogonal zur Geschwindigkeit ist.
- (b) Drücken Sie die Komponenten von b^μ explizit durch die Komponenten der Systemgeschwindigkeit $\underline{v}=(v_x,v_y,v_z)^T$ aus.

Aufgabe 30 (8 Punkte): Relativistische Ladung

Eine Punktladung q bewegt sich durch einen im Laborsystem ruhenden Plattenkondensator mit der relativistischen Geschwindigkeit $v=(v_0,0)^T$. Die Oberflächenladungsdichte der Kondensatorplatten betrage $\pm \sigma$, mit einem Plattenabstand d und einer Länge ℓ (Randeffekte seien im Folgenden vernachlässigt: $\underline{E}=\underline{B}=0$ außerhalb des Kondensators).



- (a) Berechnen Sie im Laborsystem das elektrische Feld \underline{E} und das Magnetfeld \underline{B} , das auf das relativistische Teilchen q wirkt. Bestimmen Sie dessen Geschwindigkeitskomponente v_y in y-Richtung nach Durchlaufen des Kondensators.
- (b) Berechnen Sie im mitbewegten Bezugssystem der Ladung das elektrische Feld \underline{E}' und das Magnetfeld \underline{B}' , das auf q wirkt. (Das Teilchen ist hier also in Ruhe.) Bestimmen Sie dessen Geschwindigkeitskomponente v_y in y-Richtung nach Durchlaufen des Kondensators.
- (c) Wir befinden uns nun in einem bewegten Bezugssystem, in dem die Ladung und der Kondensator sich jeweils mit der Geschwindigkeit \tilde{v} aufeinander zu bewegen. Bestimmen Sie \tilde{v} . Hinweis: $\tilde{v} \neq \frac{v}{2}$!
 - Berechnen Sie das elektrische Feld $\underline{\tilde{E}}$ und das Magnetfeld $\underline{\tilde{B}}$, das auf q wirkt. Bestimmen Sie dessen Geschwindigkeitskomponente v_y in y-Richtung nach Durchlaufen des Kondensators.
- (d) Fertigen Sie jeweils eine aussagekräftige Skizze für die elektrischen und magnetischen Felder aus den Teilaufgaben a) bis c) an.

Hinweis: Beachten Sie Zeitdilatation und Längenkontraktion. Nehmen Sie an, dass $v_y \ll c$.

Bitte Rückseite beachten!→

11. Übung TPIII WS 19/20

Aufgabe 31 (7 Punkte): Wellengleichung

Die Wellengleichung ist eine partialle Differentialgleichung zweiter Ordnung

$$\partial_{xx} f(x, t) - \frac{1}{c^2} \partial_{tt} f(x, t) = 0,$$

welche die Ausbreitung von elektromagnetischen Wellen beschreibt. Hierbei ist c die Lichtgeschwindigkeit und $\partial_{xx}:=rac{\partial^2}{\partial x^2}$ und $\partial_{tt}:=rac{\partial^2}{\partial t^2}$ sind die zweiten partiellen Ableitungen nach Ort und

(a) Zeigen Sie, dass für jede Funktion $\phi(\cdot)$ die Funktion $f(x,t) := \phi(x \pm ct)$ eine Lösung der Wellengleichung ist. Wie verhalten sich diese Lösungen anschaulich?

Bei einer Koordinatentransformation

$$\tilde{x} = \tilde{x}(x, t), \ \tilde{t} = \tilde{t}(x, t), \ \tilde{f}(\tilde{x}, \tilde{t}) = f(x, t)$$

transformieren sich Ableitungen gemäß

$$\frac{\partial \bullet}{\partial x} = \frac{\partial \tilde{x}}{\partial x} \frac{\partial \tilde{\bullet}}{\partial \tilde{x}} + \frac{\partial \tilde{t}}{\partial x} \frac{\partial \tilde{\bullet}}{\partial \tilde{t}}, \qquad \frac{\partial \bullet}{\partial t} = \frac{\partial \tilde{x}}{\partial t} \frac{\partial \tilde{\bullet}}{\partial \tilde{x}} + \frac{\partial \tilde{t}}{\partial t} \frac{\partial \tilde{\bullet}}{\partial \tilde{t}},$$

wobei • ein Platzhalter für eine beliebige Funktion ist.

(b) Transformieren Sie die Wellengleichung mit der Galilei-Transformation

$$\tilde{x} = x + vt, \quad \tilde{t} = t$$

(benutzen Sie die Notation $\partial_{xt}=\partial_{tx}=\frac{\partial^2}{\partial x\partial t}$). Ist die Wellengleichung invariant unter Galilei-Transformation (d.h. hat sie in den \sim -Koordinaten dieselbe Form)?

(c) Zeigen Sie, dass die Wellengleichung invariant unter der Lorentz-Transformation ist, d.h.

$$\tilde{x} = \gamma \left(x - vt \right), \ \ \text{und} \ \ \tilde{t} = \gamma \left(t - \frac{vx}{c^2} \right), \ \ \text{mit} \ \ \gamma := \left(1 - \left(\frac{v}{c} \right)^2 \right)^{-\frac{1}{2}}.$$

Scheinkriterien:

- Mindestens 50% der Übungspunkte (Abgabe in 3er Gruppen). Ab dem zweiten Ubungsblatt werden Zweierabgaben nicht mehr akzeptiert. Einzelabgaben werden generell nicht akzeptiert. Zur Vermittlung benutzt bitte die eingerichtete Gruppenbörse am EW 060.
- Regelmäßige, aktive Teilnahme an den Tutorien.
- Bestandene Klausur.

Sprechstunden		
Prof. Dr. Kathy Lüdge	Fr, 10:15-11:15	EW 741
Alexander Kraft	Mi, 15:00-16:00	EW 269
Leonhard Schülen	Do, 10:00-11:00	ER 242
Thomas Martynec	Mo, 14:00-15:00	EW 279
Jonah Friederich	Di, 10:00-11:00	EW 060
Isaac Tesfaye	Do, 15:00-16:00	EW 060

2