Prof. Dr. Kathy Lüdge

Alexander Kraft, Leonhard Schülen, Thomas Martynec, Jonah Friederich, Isaac Tesfaye

2. Übungsblatt - Theoretische Physik III: Elektrodynamik

Abgabe: Mi. 06.11.2019 bis 12:00 Uhr, Briefkasten ER-Gebäude

Aufgabe 4 (5 Punkte): Green'sche Identitäten

Seien $\Theta(\mathbf{r})$ und $\Psi(\mathbf{r})$ zwei skalare, zweimal stetig differenzierbare Felder. Beweisen Sie mit Hilfe des Gauß'schen Integralsatzes

(a) die 1. Green'sche Identität

$$\int\limits_{V}\mathrm{d}V\left(\Theta\,\Delta\Psi+\nabla\Theta\cdot\nabla\Psi\right)=\int\limits_{\partial V}\mathrm{d}\mathbf{f}\cdot\left(\Theta\,\nabla\Psi\right)\quad\text{und}$$

(b) die 2. Green'sche Identität

$$\int_{V} dV \left(\Theta \Delta \Psi - \Psi \Delta \Theta\right) = \int_{\partial V} d\mathbf{f} \cdot \left(\Theta \nabla \Psi - \Psi \nabla \Theta\right),$$

wobei df das orientierte Flächenelement senkrecht zur Oberfläche ∂V bezeichnet.

(c) Zwei skalare Felder $\Phi_1(\mathbf{r})$ und $\Phi_2(\mathbf{r})$ erfüllen beide die Poisson-Gleichung

$$\Delta\Phi_1(\mathbf{r}) = \Delta\Phi_2(\mathbf{r}) = \frac{-\rho(\mathbf{r})}{\varepsilon_0}.$$
 (1)

Auf der Oberfläche ∂V gelte $\Phi_1(\mathbf{r}) = \Phi_2(\mathbf{r})$ (vgl. Dirichlet Randbedingung). Zeigen Sie, dass dann $\Phi_1(\mathbf{r}) = \Phi_2(\mathbf{r})$ überall in V gilt.

Tipp: Benutzen Sie die Green'sche Identität aus Aufgabenteil (a) für das skalare Feld $\Phi_1(\mathbf{r}) - \Phi_2(\mathbf{r})$.

Aufgabe 5 (7 Punkte): Multipole

Betrachten Sie die Multipol-Entwicklungen der folgenden Ladungsverteilungen:

- (a) An zwei Eckpunkten eines gleichseitigen Dreiecks (Seitenlänge d) befinden sich Punktladungen der Größe q. Am dritten Eckpunkt befindet sich eine Punktladung der Größe -q. Bestimmen Sie Monopol- und Dipolmoment dieser Ladungsanordnung.
- (b) Auf der Oberfläche eines Rotationsellipsoids mit den Halbachsen a und b sei die Ladung q homogen verteilt. Bestimmen Sie den Quadrupoltensor Q_{kl} , zeigen Sie, dass dieser nur einen unabhängigen Eintrag $Q:=Q_{33}$ besitzt, und berechnen Sie Q.

Hinweis: Ein Punkt \underline{r}' auf der Oberfläche eines im Ursprung zentrierten Rotationsellipsoiden erfüllt

$$\left(\frac{x'}{a}\right)^2 + \left(\frac{y'}{a}\right)^2 + \left(\frac{z'}{b}\right)^2 = 1.$$

Bitte Rückseite beachten!→

2. Übung TPIII WS 19/20

Aufgabe 6 (8 Punkte): Unendlich ausgedehnter Plattenkondensator

Zwei unendlich ausgedehnte, beliebig dünne und zueinander parallele Platten besitzen eine homogen verteilte Flächenladungsdichte σ_0 und $-\sigma_0$ und den Abstand d. Eine der beiden Platten liegt in der x-y-Ebene und die andere befindet sich bei z=d.

- (a) Berechnen Sie mithilfe des Gauß'schen Gesetzes das elektrische Feld $\mathbf{E}(\mathbf{r})$ und das daraus resultierende Potential $\Phi(\mathbf{r})$ zunächst für **eine** Platte in der x-y-Ebene mit $\sigma = \sigma_0$. Sind das elektrische Feld \mathbf{E} und das Potential Φ an der Grenzfläche stetig?
- (b) Berechnen Sie nun $\mathbf{E}(\mathbf{r})$ und $\Phi(\mathbf{r})$ für die oben beschriebene Anordnung zweier Platten. Wie verhalten sich das elektrische Feld und das Potential nun an den Grenzflächen? Skizzieren Sie außerdem die z-Komponente des elektrischen Feldes $E_z(z)$ sowie das Potential $\Phi(z)$ als Funktion von z.
- (c) Berechnen Sie die Energiedichte w des elektrostatischen Feldes.
- (c) Was geschieht für den Grenzfall $d \to 0$ unter der Bedingung $D = d\sigma_0 = \text{const.}$? Bleibt das daraus resultierende Potential bei z = 0 stetig? (Keine Rechnung, nur physikalische Begründung)

Scheinkriterien:

- Mindestens 50% der Übungspunkte (Abgabe in 3er Gruppen).

 Ab dem zweiten Übungsblatt werden Zweierabgaben nicht mehr akzeptiert. Einzelabgaben werden generell nicht akzeptiert. Zur Vermittlung benutzt bitte die eingerichtete Gruppenbörse am EW 060.
- Regelmäßige, aktive Teilnahme an den Tutorien.
- Bestandene Klausur.

Sprechstunden		
Prof. Dr. Kathy Lüdge	Fr, 10:15-11:15	EW 741
Alexander Kraft	Mi, 15:00-16:00	EW 269
Leonhard Schülen	Do, 10:00-11:00	ER 242
Thomas Martynec	Mo, 14:00-15:00	EW 279
Jonah Friederich	Di, 10:00-11:00	EW 060
Isaac Tesfaye	Do, 15:00-16:00	EW 060