Prof. Dr. Kathy Lüdge

Alexander Kraft, Leonhard Schülen, Thomas Martynec, Jonah Friederich, Isaac Tesfaye

9. Übungsblatt - Theoretische Physik III: Elektrodynamik

Abgabe: Mi. 08.01.2020 bis 12:00 Uhr, Briefkasten ER-Gebäude

Aufgabe 24 (8 Punkte): Dielektrische Kugel

Der Raum ${f R}^3$ sei mit Vakuum und einem homogenen elektrischen Feld \underline{E}_{∞} ausgefüllt. Wir bringen nun eine homogene dielektrische Kugel mit der Dielektrizitätskonstanten $\epsilon > \epsilon_0$ und Radius R in die Anordnung. Im Inneren der Kugel stellt sich ein homogenes Feld ein, außerhalb wird das bereits angelegte homogene Feld von dem Feld eines Dipols überlagert, dessen Dipolmoment gleich der Polarisation \underline{P}_0 innerhalb der Kugel ist. Zeigen Sie, dass dies stimmt und gehen Sie dabei wie folgt vor:

- (a) Warum ist die angegebene Lösung für die beiden Bereiche innerhalb und außerhalb der Kugel unproblematisch?
- (b) Berechnen Sie die Ladungsdichte auf der Oberfläche.
- (c) Lassen sich die Stetigkeits- und Unstetigkeitsbedingungen des \underline{E} und \underline{D} -Feldes an der Grenzfläche erfüllen? Wie lautet dann der Zusammenhang zwischen \underline{P}_0 und \underline{E}_∞ ?
- (d) Fertigen Sie eine aussagekräftige Skizze des E- und D-Feldes an.

Aufgabe 25 (8 Punkte): Magnetische Kugel

Eine Kugel mit Radius R befinde sich im Vakuum und besitze eine homogene Magnetisierung \underline{M} . Das Magnetfeld außerhalb der Kugel ist das eines magnetischen Dipols mit Dipolmoment \underline{d} . Zeigen Sie, dass dies stimmt und gehen Sie dabei wie folgt vor:

- (a) Warum ist die angegebene Lösung für die beiden Bereiche innerhalb und außerhalb der Kugel unproblematisch?
- (b) Berechnen Sie die Stromdichte auf der Oberfläche.
- (c) Lassen sich die Stetigkeits- und Unstetigkeitsbedingungen des \underline{B} und \underline{H} -Feldes an der Grenzfläche erfüllen? Wie lautet dann der Zusammenhang zwischen \underline{M} und \underline{d} ?
- (d) Fertigen Sie eine aussagekräftige Skizze des B- und H-Feldes an und vergleichen Sie es mit der vorigen Aufgabe.

Aufgabe 26 (4 Punkte): Kontinuitätsgleichung in Materie

Zeigen Sie, dass in der Elektrodynamik in Materie die Kontinuitätsgleichung für die freien Ladungen ρ_f und die freie Stromdichte \underline{j}_f gilt. Zeigen Sie weiterhin, dass auch die Polarisationsladungen ρ_p und die Polarisationsstromdichte \underline{j}_p eine Kontinuitätsgleichung erfüllen. Diskutieren Sie die Rolle der Magnetisierungsstromdichte in diesem Kontext.

9. Übung TPIII WS 19/20

Scheinkriterien:

- Mindestens 50% der Übungspunkte (Abgabe in 3er Gruppen).

 Ab dem zweiten Übungsblatt werden Zweierabgaben nicht mehr akzeptiert. Einzelabgaben werden generell nicht akzeptiert. Zur Vermittlung benutzt bitte die eingerichtete Gruppenbörse am EW 060.
- Regelmäßige, aktive Teilnahme an den Tutorien.
- Bestandene Klausur.

Sprechstunden		
Prof. Dr. Kathy Lüdge	Fr, 10:15-11:15	EW 741
Alexander Kraft	Mi, 15:00-16:00	EW 269
Leonhard Schülen	Do, 10:00-11:00	ER 242
Thomas Martynec	Mo, 14:00-15:00	EW 279
Jonah Friederich	Di, 10:00-11:00	EW 060
Isaac Tesfaye	Do, 15:00-16:00	EW 060