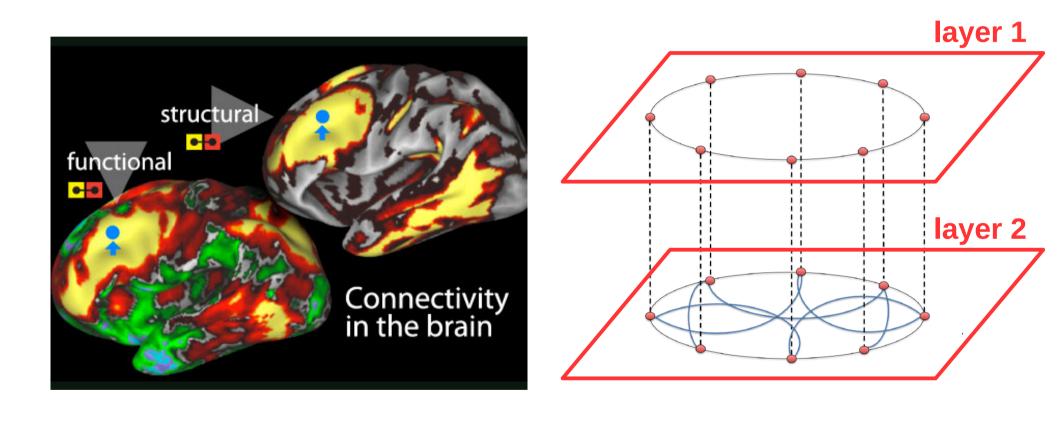
Lecture 29

Coherence resonance in multiplex neural networks

Anna Zakharova

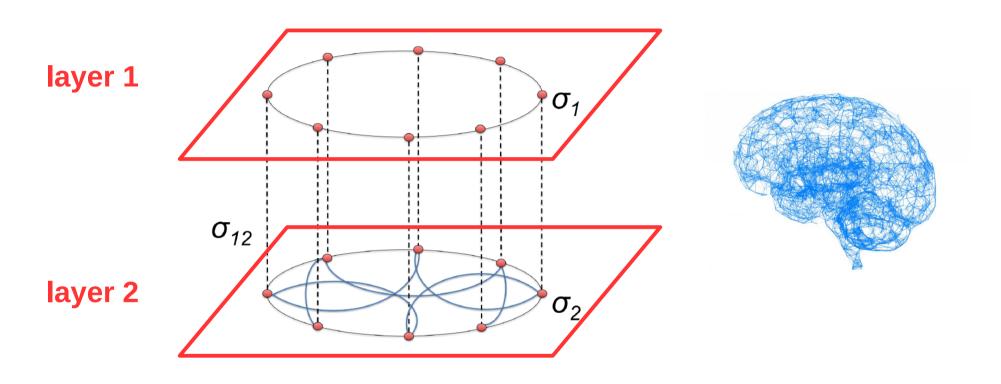
Winter Term 2019/20 Non-equilibrium Statistical Physics

Multilayer modeling of brain networks



M. De Domenico, Multilayer modeling and analysis of human brain networks, Gigascience 6, 1 (2017)

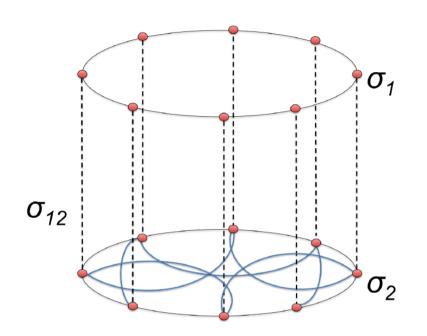
Control by multiplexing



Controling one layer by manipulating the parameters of the other layer

Strong and weak multiplexing

Multiplex network



weak multiplexing

$$\sigma_{12} < \sigma_{1}, \ \sigma_{12} < \sigma_{2}$$

strong multiplexing

$$\sigma_{12} \geq \sigma_{1}, \ \sigma_{12} \geq \sigma_{2}$$

Can weak multiplexing have a strong impact on the dynamics?

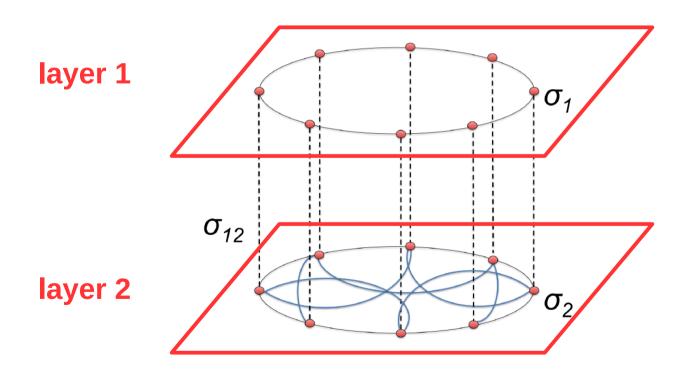
Strong multiplexing:

S. Ghosh, A. Kumar, A. Zakharova, S. Jalan, Birth and death of chimera: interplay of delay and multiplexing, EPL 115, 60005 (2016)

S. Ghosh, A. Zakharova, S. Jalan, Non-identical multiplexing promotes chimera states, Chaos, Solitons and Fractals 106, 56-60 (2018)

Weak multiplexing

Can we control the dynamics in the presence of weak multiplexing?



Can we control one layer by manipulating the parameters of the other layer?

Coherence resonance

Model: FitzHugh-Nagumo system in excitable regime

$$\varepsilon \dot{u} = u - \frac{u^3}{3} - v,$$

$$\dot{v} = u + a + \sqrt{2D}\xi(t)$$

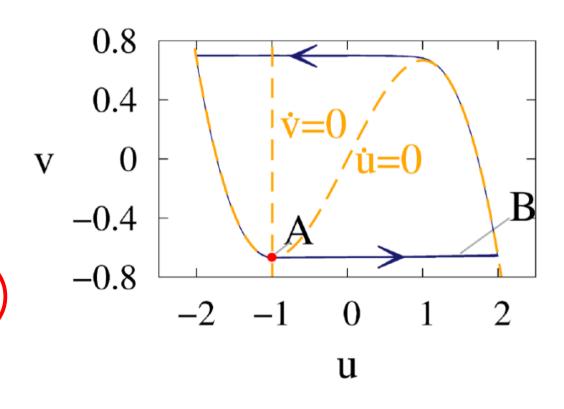
u – activator

v – inhibitor

oscillatory

$$|a_i| > 1$$
 excitable

single node dynamics



 $\varepsilon = 0.01$, a=1.001, D=0.0001 System parameters:

Coherence resonance: measures

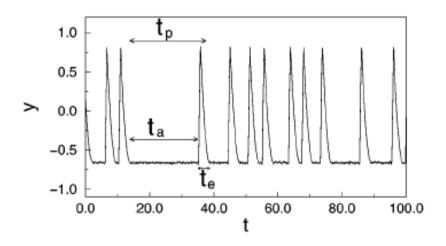
Normalized standard deviation of the interspike interval

single node

$$R_T = rac{\sqrt{\langle t_{ISI}^2
angle - \langle t_{ISI}
angle^2}}{\langle t_{ISI}
angle}$$

network

$$R_T = \frac{\sqrt{\langle \overline{t_{ISI}} \rangle - \langle \overline{t_{ISI}} \rangle^2}}{\langle \overline{t_{ISI}} \rangle}$$

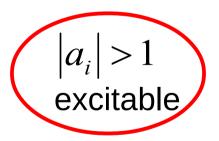


N. Semenova and A. Zakharova, Weak multiplexing induces coherence resonance, Chaos 28, 5, 051104 (2018)

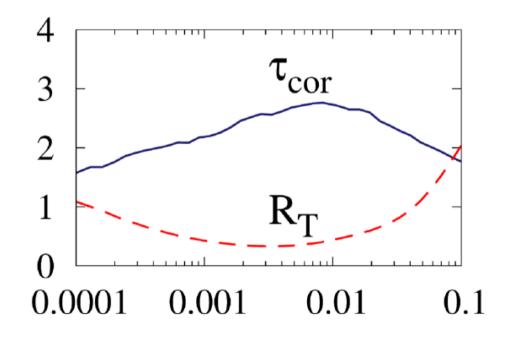
Model: FitzHugh-Nagumo system in excitable regime

$$\varepsilon \dot{u} = u - \frac{u^3}{3} - v,$$

$$\dot{v} = u + a + \sqrt{2D}\xi(t)$$



Coherence resonance



Can we control coherence resonance by weak multiplexing?

Multiplex network of excitable FHN neurons

$$\varepsilon \frac{du_{1i}}{dt} = u_{1i} - \frac{u_{1i}^3}{3} - v_{1i} + \frac{\sigma_1}{2} \sum_{j=i-1}^{i+1} (u_{1j} - u_{1i}) + (\sigma_{12}(u_{2i} - u_{1i})),$$

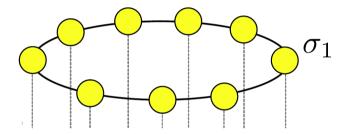
$$\frac{dv_{1i}}{dt} = u_{1i} + a + \sqrt{2D_1} \xi_i(t),$$

$$\varepsilon \frac{du_{2i}}{dt} = u_{2i} - \frac{u_{2i}^3}{3} - v_{2i} + \frac{\sigma_2}{2} \sum_{j=i-1}^{i+1} (u_{2j} - u_{2i}) + (\sigma_{12}(u_{1i} - u_{2i})),$$

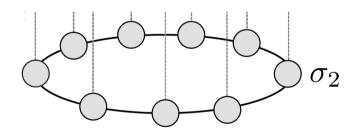
$$\frac{dv_{2i}}{dt} = u_{2i} + a + \sqrt{2D_2} \eta_i(t),$$

 σ_{12}

N. Semenova and A. Zakharova, Weak multiplexing induces coherence resonance, Chaos 28, 5, 051104 (2018)

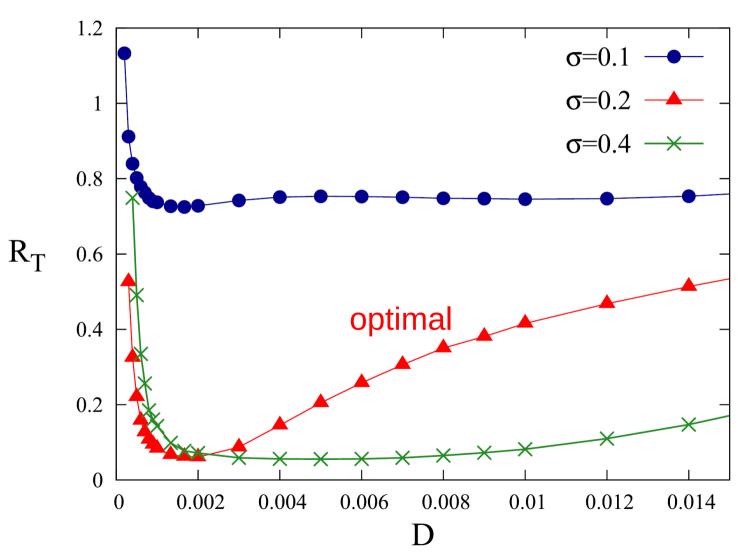


Dynamics of isolated layers

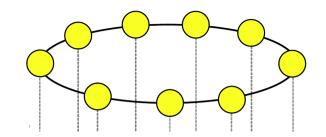


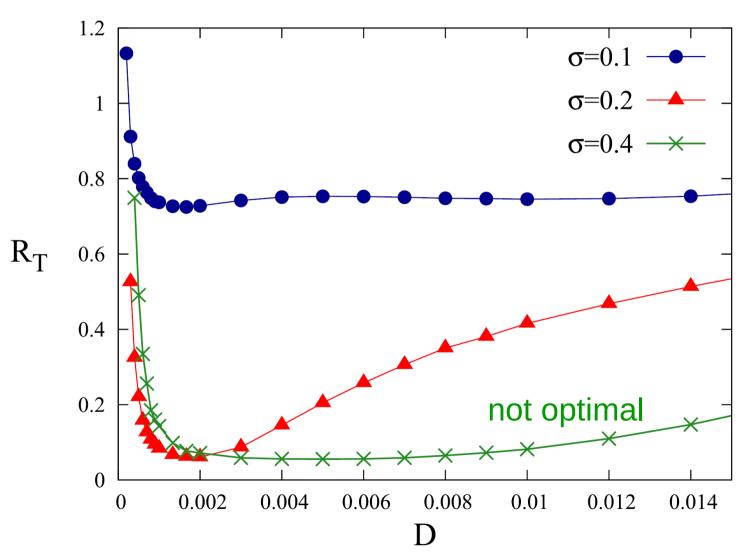
Isolated ring network



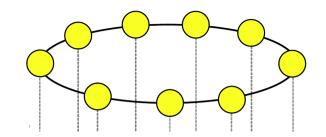


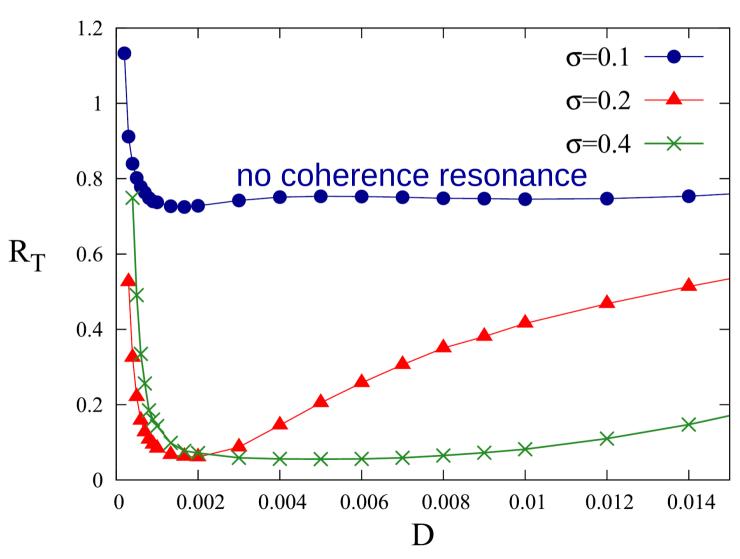
Isolated ring network



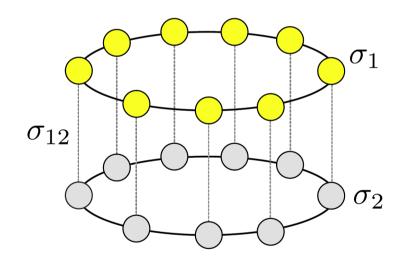


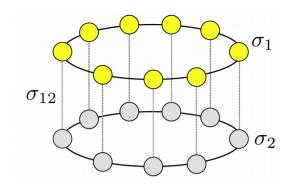
Isolated ring network

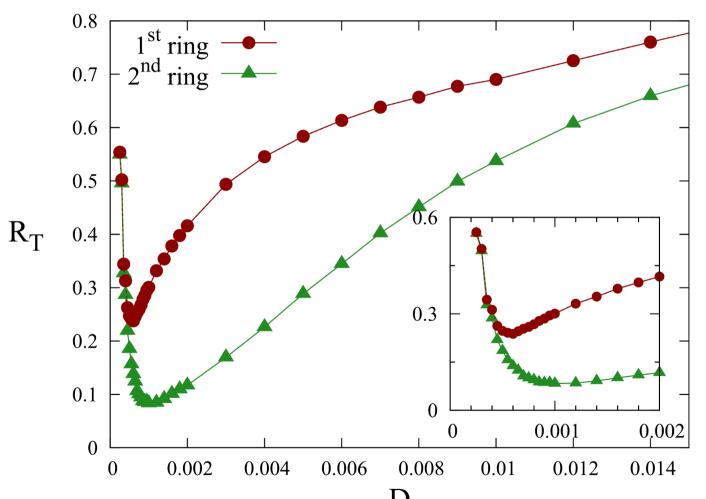




Multiplex network: coupling strength mismatch





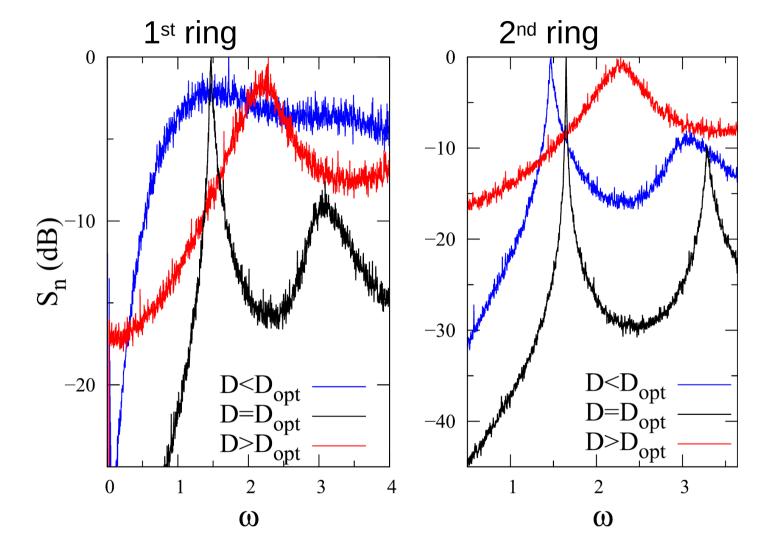


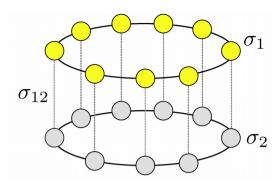
weak multiplexing $\sigma_{12} = 0.04$

 $\sigma_1 = 0.1$ (no CR in isolation)

 $\sigma_2 = 0.2$ (optimal)

Weak multiplexing induces coherence resonance



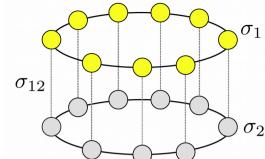


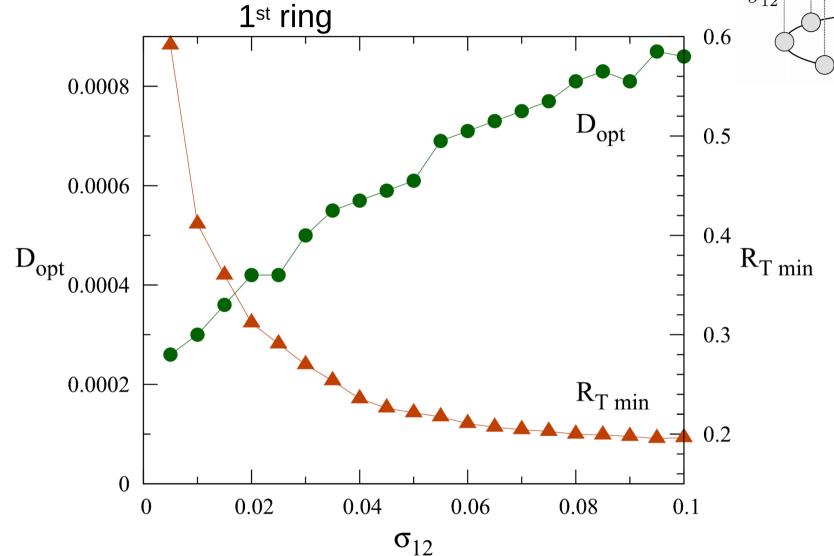
weak multiplexing $\sigma_{12} = 0.04$

 $\sigma_1 = 0.1$ (no CR in isolation)

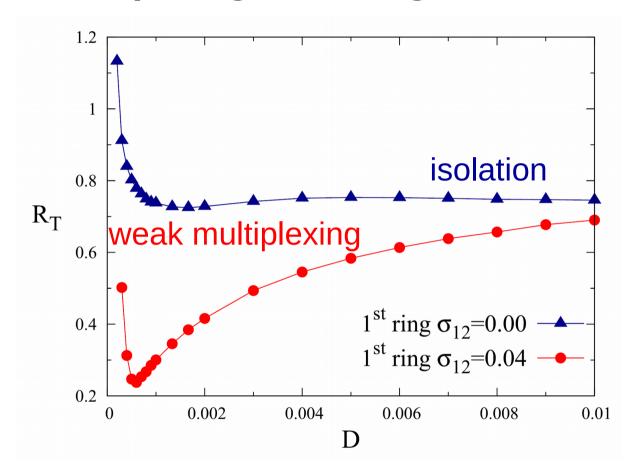
 $\sigma_2 = 0.2$ (optimal)

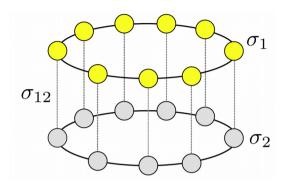
Coherence resonance is better pronounced in the
 2nd ring





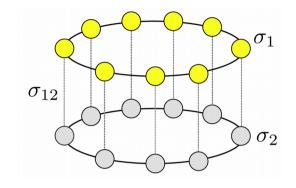
Stronger multiplexing increases the coherence of oscillations in the 1st ring





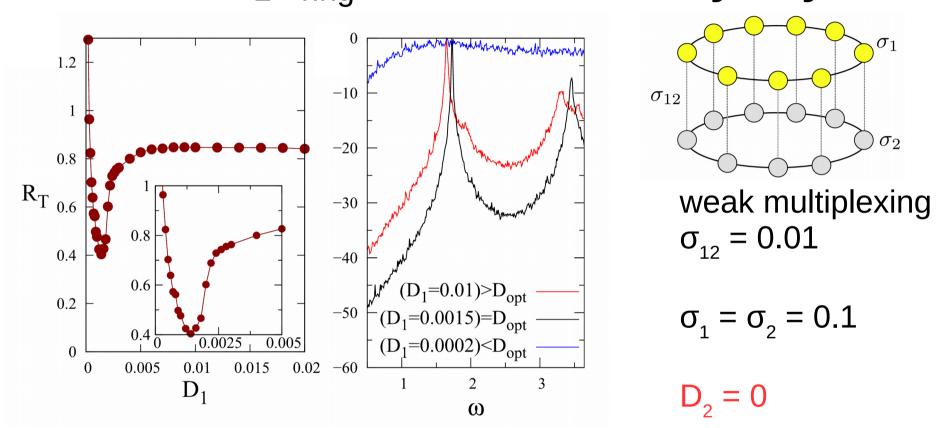
Weak multiplexing induces coherence resonance

N. Semenova and A. Zakharova, Weak multiplexing induces coherence resonance, Chaos 28, 5, 051104 (2018)



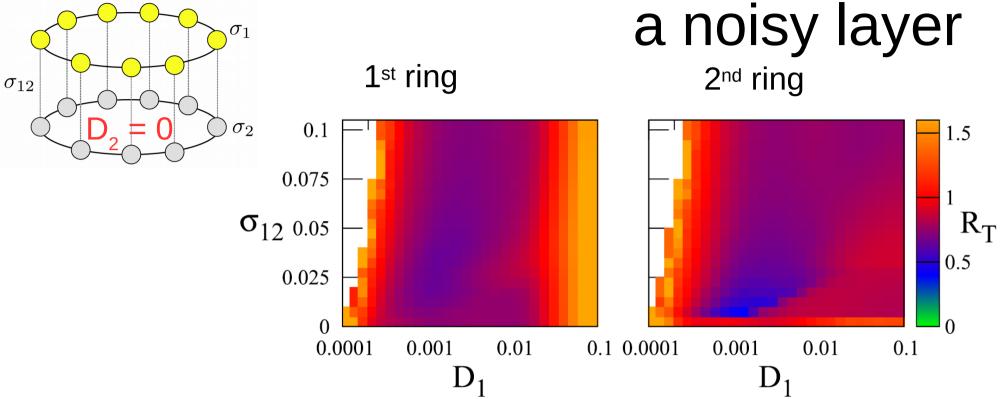
Deterministic layer multiplexed with a noisy layer

Deterministic layer multiplexed with a noisy layer

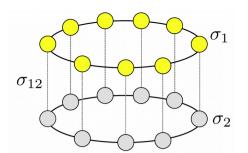


- Weak multiplexing induces coherence resonance in the deterministic layer
- N. Semenova and A. Zakharova, Weak multiplexing induces coherence resonance, Chaos 28, 5, 051104 (2018)

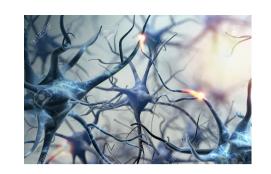
Deterministic layer multiplexed with



- Coherence resonance is more pronounced in the 2nd layer
- Stronger multiplexing shifts the minimum of R_T to larger values of noise
- Multiplexing induces coherence resonance for rather small values of σ_{12}



Conclusions

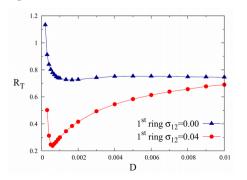


Weak multiplexing is a powerful method to control neural networks

Induces coherence resonance

in the parameter regimes where it is absent for isolated networks

the coupling strength is not optimal



there is **no noise** noise exciting the elements

