Prof. Sabine Klapp

Dr. Alexander Carmele, Dr. Malte Selig, Arne Zantop

4. Übungsblatt – Quantenmechanik II

Abgabe: Do. 21.11.2019 bis 12:00 Uhr, Briefkasten ER-Gebäude

Bei den schriftlichen Ausarbeitungen werden ausführliche Kommentare zum Vorgehen erwartet. Dafür gibt es auch Punkte! Die Abgabe soll in Dreiergruppen erfolgen.

Aufgabe 9 (8 Punkte): Erwartungswerte

Für den Radialanteil $u_{nl}(r) = rR_{nl}(r)$ des nicht-relativistischen Wasserstoffatoms gilt die folgende Schrödingergleichung:

(1)
$$\tilde{H}u_{nl}(r) = \tilde{E}u_{nl}(r)$$

mit

(2)
$$\tilde{H} = \frac{d^2}{d\rho^2} + \frac{2}{\rho} - \frac{l(l+1)}{\rho^2},$$

(3)
$$\tilde{E} = \frac{1}{(N+l+1)^2}, \quad (n=N+l+1)$$

$$\rho = \frac{m_e Z e^2}{4\pi\varepsilon_0 \hbar^2} r$$

$$\rho = \frac{m_e Z e^2}{4\pi\varepsilon_0 \hbar^2} r$$

(a) Zeigen Sie unter Verwendung des im Tutorium besprochenen Virialsatzes die Gültigkeit von

(5)
$$\langle nlm | r^{-1} | nlm \rangle = \frac{1}{4\pi\varepsilon_0} \frac{m_e Z e^2}{\hbar^2 n^2}.$$

(b) Zeigen Sie unter Verwendung der oben angegebenen Schrödinger-Gleichung, dass

(6)
$$\langle nlm | r^{-2} | nlm \rangle = \left(\frac{m_e Z e^2}{4\pi \varepsilon_0 \hbar^2} \right)^2 \frac{1}{n^3 (l + \frac{1}{2})}.$$

(c) Zeigen Sie, dass

(7)
$$\langle nlm | r^{-3} | nlm \rangle = \left(\frac{m_e Z e^2}{4\pi \varepsilon_0 \hbar^2} \right)^3 \frac{1}{n^3 l(l + \frac{1}{2})(l+1)} \qquad (l \neq 0).$$

Aufgabe 10 (12 Punkte): Relativistische Energiekorrekturen

Zu dem bekannten nicht-relativistischen Hamilton-Operator des Wasserstoffatoms H_0 wurden in der Vorlesung zusätzliche relativistische Korrekturterme berechnet:

$$E\varphi_{1} = \left[\underbrace{\left(\frac{\mathbf{p}^{2}}{2m_{e}} + q\phi(r)\right)\hat{1}}_{=H_{0}} \underbrace{-\frac{\mathbf{p}^{4}}{8m_{e}^{3}c^{2}}\hat{1}}_{=H_{1}} \underbrace{-\frac{\hbar^{2}q\rho}{8m_{e}^{2}c^{2}\varepsilon_{0}}\hat{1}}_{=H_{2}} \underbrace{+\frac{q\partial_{r}\phi}{2m_{e}^{2}c^{2}r}\hat{\mathbf{s}} \cdot \mathbf{l}}_{=H_{2}}\right]\varphi_{1}$$

Dabei ist H_1 der Term, den man bei der Berücksichtigung höherer Potenzen bei der Entwicklung des relativistischen Ausdrucks für die Energie erhält, H_2 der Darwin-Term und H_3 die Spin-Bahn-Kopplung. Das ungestörte Eigenwertproblem $H_0 | nlm \rangle = E_n | nlm \rangle$, mit $\langle \mathbf{r} | nlm \rangle = \varphi_{nlm}(\mathbf{r})$, und das Kernpotential $\phi(r)$ (Poisson: $\Delta\phi=ho/arepsilon_0$) seien bekannt. Jetzt sollen die Energiekorrekturen in erster Ordnung Störungstheorie berechnet werden. Sei W ein Störoperator, dann ist die Energiekorrektur erster Ordnung gegeben durch das Matrixelement $\langle nlm | W | nlm \rangle =$ $\int d^3r \varphi_{nlm}^*(\mathbf{r}) W(\mathbf{r}) \varphi_{nlm}(\mathbf{r}).$

4. Übung QM2 WS19/20

- (a) Leiten Sie die Abhängigkeit der Energiekorrektur $\langle nlm \, | H_1 | \, nlm \rangle$ von den Energieeigenwerten des ungestörten Wasserstoffatoms E_n , dem Erwartungswert $\langle nlm \, | r^{-1} | \, nlm \rangle$ und dem Erwartungswert $\langle nlm \, | r^{-2} | \, nlm \rangle$ her. Dazu ist es hilfreich zu zeigen, dass $H_1 = -\frac{1}{2m_ec^2}(H_0 + \frac{Ze^2}{4\pi\varepsilon nr})^2$ gilt.
- (b) Warum verschwindet die Energiekorrektur $\langle nlm \, | H_2 | \, nlm \rangle$ für alle Zustände mit l>0? Berechnen Sie die Energiekorrektur. (Tipp: $|\varphi_{nlm}(0)|^2=\frac{4\varepsilon_0}{(4\pi\varepsilon_0)^4}(\frac{m_eZe^2}{n\hbar^2})^3\delta_{l0}$).
- (c) Berechnen Sie die Energiekorrektur $\langle n,j=l\pm 1/2,l,m_j\,|H_3|\,n,j,l,m_j\rangle$ in Abhängigkeit von dem Term $\langle n,j,l,m_j\,|r^{-3}|\,n,j,l,m_j\rangle$, wobei j die Gesamtdrehimpulsquantenzahl ist. Dabei ist es zweckmäßig den Term $\hat{\mathbf{s}}\cdot\hat{\mathbf{l}}$ mit Hilfe von $\hat{\mathbf{j}}^2,\hat{\mathbf{l}}^2$ und $\hat{\mathbf{s}}^2$ darzustellen.
- (d) Berechnen Sie die gesamte Energiekorrektur. Die Energieeigenwerte des ungestörten Wasserstoffatoms (bzw. wasserstoffähnlichen Ions) lauten:

$$E_n = -\frac{1}{(4\pi\varepsilon_0)^2} \frac{m_e Z^2 e^4}{2\hbar^2 n^2}$$