Prof. Sabine Klapp

Dr. Alexander Carmele, Dr. Malte Selig, Arne Zantop

5. Übungsblatt – Quantenmechanik II

Abgabe: Do. 28.11.2019 bis 12:00 Uhr, Briefkasten ER-Gebäude

Bei den schriftlichen Ausarbeitungen werden ausführliche Kommentare zum Vorgehen erwartet. Dafür gibt es auch Punkte! Die Abgabe soll in Dreiergruppen erfolgen.

Aufgabe 11 (20 Punkte): Zweiteilchenzustände und Eigenwertprobleme

Betrachten Sie den Hilbertraum $\mathcal{H}=\mathcal{H}_1\otimes\mathcal{H}_2$ des Zwei-Spin-Systems. $|i\rangle_k\in\mathcal{H}_k, k\in\{1,2\}$ ist dabei die Basis der Spin-Einteilchen-Wellenfunktion des k-ten Einteilchen-Hilbertraums und $i\in\{1/2\equiv\uparrow,-1/2\equiv\downarrow\}$. D.h. für $|i\rangle_k$ gelten die bekannten Eigenwertgleichungen $\hat{S}_k^z|i\rangle_k=\hbar m_{k,i}|i\rangle_k, m_{k,i}\in\{\frac{1}{2},-\frac{1}{2}\}$ und $\hat{\mathbf{S}}_k^2|i\rangle_k=\frac{3}{4}\hbar^2|i\rangle_k$. Wir entwickeln den Zwei-Teilchen-Zustand $|\phi\rangle$ nach den Einteilchenfunktionen $|\phi\rangle=\sum_{i,j}a_{i,j}|i\rangle_1|j\rangle_2,\ i,j\in\{\uparrow,\downarrow\}$. Und wir definieren einen neuen Operator $\hat{\mathbf{S}}=\hat{\mathbf{S}}_1+\hat{\mathbf{S}}_2$.

1. Spinleiteroperatoren (4 Punkte)

Der Spin-Leiteroperator ist definiert durch $\hat{S}_k^{\pm} = \hat{S}_k^x \pm i \hat{S}_k^y$. Zeigen Sie dessen Wirkung auf die Einteilchenbasis $|i\rangle_k$:

$$\hat{S}_k^\pm|i\rangle_k=f_{k,i}^\pm|i\pm1\rangle_k \text{ mit } f_{k,i}^\pm=\hbar\sqrt{\frac{3}{4}-m_{k,i}(m_{k,i}\pm1)}.$$

Tipps: Betrachten Sie dazu das Konstrukt $\hat{S}_k^z \hat{S}_k^{\pm} |i\rangle_k$, verwenden Sie eine geeignete Kommutatorrelation (nur hier wird die explizite Definition des Leiteroperators gebraucht) sowie Normierungseigenschaft.

 $\text{Hinweis: Wegen Drehimpulseigenschaften gilt, } [\hat{S}_k^l,\hat{S}_k^m] = i\hbar\epsilon_{l,m,n}\hat{S}_k^n, \quad l,m,n\in x,y,z.$

- 2. Zweiteilchenoperator und Zweiteilchenzustand (9 Punkte)
 - (a) Berechnen Sie nun die Wirkung des neuen Operators $\hat{\mathbf{S}}^z$ auf den Zustand $|i\rangle_1|j\rangle_2$.
 - (b) Berechnen Sie die folgende Wirkung des Operators $\hat{\mathbf{S}}^2$ auf den Zustand $|i\rangle_1|j\rangle_2$:

Bitte wenden.

5. Übung QM2 WS19/20

- 3. Neue Zweiteilchenbasis (7 Punkte)
 - Wir suchen jetzt eine neue Zweiteilchenbasis $|S,M_S\rangle$, die die neuen Operatoren $\hat{\mathbf{S}}^z$ und $\hat{\mathbf{S}}^2$ als Eigenfunktionen haben. Dabei sind S,M_S zwei neue Quantenzahlen, anstelle von den zwei alten Quantenzahlen $m_{1,i},m_{2,i}\in\{\pm\frac{1}{2}\}.$
 - (a) Was muss nach der allgemeinen Drehimpulsalgebra für die Wirkung der neuen Operatoren auf den Zustand $|S,M_S\rangle$ gelten?
 - (b) Identifizieren Sie mittels (a) folgende vier Zweiteilchenzustände in der neuen Zweiteilchenbasis: i) $|\downarrow\rangle_1|\downarrow\rangle_2$, ii) $|\uparrow\rangle_1|\uparrow\rangle_2$, iii) $\frac{1}{\sqrt{2}}(|\downarrow\rangle_1|\uparrow\rangle_2+|\uparrow\rangle_1|\downarrow\rangle_2)$, iv) $\frac{1}{\sqrt{2}}(|\downarrow\rangle_1|\uparrow\rangle_2-|\uparrow\rangle_1|\downarrow\rangle_2)$. Welche nennt man davon Triplett- welche Singulettzustände und warum? Welche Zustände davon sind symmetrisch, welche antisymmetrisch?
 - (c) Erklären Sie kurz, was man unter "guten" Quantenzahlen versteht.