Inhalt des Dokuments
Important Information
The lectures will take place online via a video conferencing tool.
To enter the lecture room, follow this link:
https://tu-berlin.zoom.us/j/93080072811?pwd=UkNtRVM1U1RpblUyWUVmVlRaME1PQT09 [1]
The first lecture will take place on April 22 at 10:15.
Please register in ISIS to access the digital
material.
Nonlinear Dynamics in Complex Systems and Networks
Wahllehrveranstaltung 3233 L 521 im Sommersemester 2020
Lecturer: Prof. Dr. Anna Zakharova, anna.zakharova@tu-berlin.de [2]
Lecture:
We 10:15-11:45 EW 733 (first lecture on 22.04.2020)
SAP number 3233 L 521
When attending this course 3 credit points within the ECTS system can be obtained. In combination with the Tutorial (SAP number 3233 L 522) 6 credit points can be obtained. More information on the "Modul -Spezielle Themen der Theoretischen Physik" can be found here:
The course is suitable for students of physics (MSc), mathematics (MSc) and other natural science MSc programmes and interested members of the SFB 910.
The course will be given in English.
The following courses in Summer Term 2020 are recommended:
- Tutorial "Nonlinear Dynamics in Complex Systems and Networks [4]": LV-Nr. 3233 L 522, Wednesdays 16:15 -17:45 via Zoom (link in ISIS announcement "Tutorial - New Time")
- Seminar "Multilayer Networks: Applications and Related Concepts [5]": LV-Nr. 3233 L 611, Tuesday 16:15, via Zoom [6]
Lectures
The lectures cover the main concepts of nonlinear dynamics. First, the basic ideas of nonlinear dynamics, such as the description of nonlinear systems, stability analysis, bifurcations, and attractors will be introduced. Further, we will discuss the main concepts of the synchronization theory and apply the tools of nonlinear dynamics to analyze synchronization phenomena. Special attention will be paid to partial synchronization patterns. Synchronization is one of the fundamental phenomena in nature. Fireflies flashing in unison, the coordinated firing of pacemaker cells in our hearts, fish swimming in a synchronized swarm – these are just a few real-world examples of self-organization. We will discuss synchronization in various systems ranging from periodic oscillators to stochastic systems, from two coupled units to complex networks. Various applications in different fields of science including physics, chemistry, biology, and engineering will be discussed.
Literature
Books:
1U1RpblUyWUVmVlRaME1PQT09
nfrage/id/212677/?no_cache=1&ask_mail=Y7TlzgAOhOojM
V%2Fl4wBjkbBNRgI7ufvlek4dHfp5wjvIxfDLYWTiAg%3D%3D&a
sk_name=ANNA%20ZAKHAROVA
system/bolognamodule/beschreibung/anzeigen.html?number=
20547&version=2&sprache=1
/wahllehrveranstaltungen/nonlinear_dynamics_in_complex_
systems_and_networks_tutorial/
k_in_komplexen_netzwerken/nlds0/seminare/ss_2020/
PYSszMHlxNDNpWGJmcUtzQT09
Zusatzinformationen / Extras
Direktzugang
Hilfsfunktionen
https://www3.itp.tu-berlin.de/menue/lehre/lv/ss_2020/wahllehrveranstaltungen/nonlinear_dynamics_in_complex_systems_and_networks/