direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Seminar: Complex Networks and their Applications - Winter Term 2019/20

Lupe [1]

LV-Nr. 3233 L 606 Nichtlineare Dynamik in komplexen Systemen

Prof. Dr. Eckehard Schöll, PhD
Dr. Anna Zakharova
Dr. Iryna Omelchenko Time: Tuesday 16:15 (c.t.) 
Room: EW 731
Begin: 15.10.2019 Durch den Besuch der Veranstaltung mit Vortrag und Ausarbeitung können 4 ECTS Punkte erworben werden.

The seminar offers perspectives on our current research in the area of Nonlinear Dynamics and Control. The seminar is particularly suitable for BSc and MSc students looking for a final project. Students, who want to obtain a Seminarschein, are welcome as well.

The nonlinear dynamics on complex networks is a field of active research with wide range of applications in physics, chemistry, biology, technology, for instance neuronal networks, coupled lasers, electronic circuits, power grids, transportation networks, or social networks.

In the focus of the seminar will be recent studies of complex networks, collective dynamics and synchronization of patterns. We will pay attention to complex topologies such as random, multilayer, multiplex, or community networks, with static and time-varying topologies. We will discuss aspects and methods of control for spatiotemporal patterns observed in complex networks, and their relation to various applications and experiments.

Literature: www3.itp.tu-berlin.de/schoell/nlds/seminare/ [2]

Schedule and Organization: If you are interested in a particular topic, please contact one of the advisors. Final assignment of the topics will be done on 15.10.2019.

Zeitlicher Ablauf

Datum
Titel
Vortragender
Betreuer
15.10.

Introduction and organization

E. Schöll, A. Zakharova, I. Omelchenko
-
22.10
Relay synchronization in triplex neuronal networks

Fenja Drauschke

JS

05.11.
Partial synchronization in empirical brain networks as a model for unihemispheric sleep [RAM19]

Johanna Czech
RB, JS
12.11.
Adaptive synchronization of non-identical Hindmarsh-Rose networks by the Speed Gradient method [SEM18b]

Danila Semenov
-
19.11.
Solitary states in complex networks

 Leonard Schulz

AZ

26.11.
From musical structure to neural network synchronization: Neural correlates of musical form perception
Lenz Hartmann, Rolf Bader (Institute for Systematic Musicology, University of Hamburg)
-
03.12.
Does spike-timing-dependent synaptic plasticity couple or decouple neurons firing in synchrony? [KNO12]

Sören Nagel
RB
10.12.
Partial relay synchronization in three-layer networks with a hub

Julia Koulen

IO

17.12.


Deep Brain Stimulation: Changing the Network of the Brain

Narges Chinichian

JS

07.01.
Solitary states and partial synchrony in oscillatory ensembles with attractive and repulsive interactions [TEI19]

Erik Teichmann
-
14.01.
Networks in neuroscience [BAS17]

Victor Deinhart
LS
21.01.
Solitary States in Two-Layer FitzHugh-Nagumo Networks

David Janzen
LS, AZ
28.01.
Delay engineered solitary states in complex networks [SCH19a]

Joris Neudeck
AZ

04.02.
NetworkDynamics.jl - A julia package for working with Dynamics on Networks

Michael Lindner

ES
11.02.
3D isotropic Noncommutative Harmonic Oscillator in a constant magnetic field [3]


Prof. Dr. Mustafa Riza (Eastern Mediterranean University, Cyprus)


AZ
Wer Interesse an einem Vortrag hat, sollte sich mit den entsprechenden Betreuern in Verbindung setzen. Die Vortragsthemen werden dann spätestens in der ersten Seminarstunde am 09.04.2019 verteilt.

Ansprechpartner

  • Prof. Dr. E. Schöll, PhD [4] (ES)
  • Dr. Anna Zakharova [5] (AZ)
  • Dr. Iryna Omelchenko [6] (IO)
  • Rico Berner [7] (RB)
  • Jakub Sawicki [8] (JS)
  • Leonhard Schülen (LS)

Literatur zu den Vorträgen

[RAM19] L. Ramlow, J. Sawicki, A. Zakharova, J. Hlinka, J.C. Claussen, and E. Schöll. Partial synchronization in empirical brain networks as a model for unihemispheric sleep. EPL 126, 50007 (2019).

[SMI19] L.D. Smith, G.A. Gottwald. Chaos in networks of coupled oscillators with multimodal natural frequency distributions. Chaos 29, 093127 (2019).

[FRA18] I. Franovic, O.E. Omel’chenko, and M. Wolfrum. Phase-sensitive excitability of a limit cycle. Chaos 28, 071105 (2018).

[KNO12] A. Knoblauch, F. Hauser, M.-O. Gewaltig, E. Körner, G. Palm. Does spike- timing-dependent synaptic plasticity couple or decouple neurons firing in synchrony? Frontiers in Comp. Neuroscience 6, 55 (2012).

[YAM19] M.E. Yamakou, J. Jost. Control of coherence resonance by self-induced stochastic resonance in a multiplex neural network. PRE 100, 022313 (2019).

[BAS17] D.S. Bassett, and O. Sporns. Network neuroscience. Nature Neuroscience 20, 353 (2017).

[SAR16] C. Sarkar, A. Yadav, S. Jalan. Multilayer network decoding versatility and trust. EPL 113, 18007 (2016).

[JAL14] S. Jalan, C. Sarkar, A. Madhusudanan, S. K. Dwivedi. Uncovering Randomness and Success in Society PLOS ONE 9(2), e88249 (2014).

[BAN19] K. Bansal, J.O. Garcia, S.H. Tompson, T. Verstynen, J.M. Vettel, S.F. Mul- doon. Cognitive chimera states in human brain networks. Science Advances 5:eaau8535 (2019).

[SCH19a] L. Schülen, S. Ghosh, A.D. Kachhvah, A. Zakharova, and S. Jalan. Delay engineered solitary states in complex networks. Chaos Solitons Fractals (2019). [RYB19a] E. Rybalova, V.S. Anishchenko, G.I. Strelkova, and A. Zakharova. Solitary states and solitary state chimera in neural networks. Chaos 29, 071106 (2019).

[MIK18] M. Mikhaylenko, L. Ramlow, S. Jalan, and A. Zakharova, Weak multiplexing in neural networks: Switching between chimera and solitary states. Chaos 29, 023122 (2019).

[SEM18b] D. Semenov, A. Fradkov, Adaptive synchronization of two coupled non-identical Hindmarsh-Rose systems by the Speed Gradient method. IFAC-PapersOnLine 51, 12 (2018).

[TEI19]  Teichmann, E. and Rosenblum, M., Solitary states and partial synchrony in oscillatory ensembles with attractive and repulsive interactions, Chaos 29, 9, 093124 (2019).

------ Links: ------

Zusatzinformationen / Extras

Direktzugang

Schnellnavigation zur Seite über Nummerneingabe

Diese Seite verwendet Matomo für anonymisierte Webanalysen. Mehr Informationen und Opt-Out-Möglichkeiten unter Datenschutz.
Copyright TU Berlin 2008

https://www3.itp.tu-berlin.de/schoell/nlds/seminare/seminar_dienstag/